Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Epidemiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38973734

RESUMO

Telomere length is associated with chronic diseases and in younger populations, may represent a biomarker of disease susceptibility. As growing evidence suggests that environmental factors, including metals, may impact telomere length, we investigated the association between 17 metals measured in toenail samples and leukocyte relative telomere length (RTL), among 472 five- to seven-year-old children enrolled in the Bangladesh Environmental Research in Children's Health (BiRCH) cohort. In single exposure linear regression models, a doubling of arsenic (As) and mercury (Hg) (µg/g) were associated with a -0.21 (95%CI: -0.032, -0.010; p=0.0005) and -0.017 (95%CI: -0.029, -0.004; p=0.006) difference in RTL, respectively. In Bayesian Kernel Machine Regression (BKMR) mixture models, the overall metal mixture was inversely associated with RTL (P-for-trend <0.001). Negative associations with RTL were observed with both log2-As and log2-Hg, while an inverted U-shaped association was observed for log2-zinc (Zn) with RTL. We found little evidence of interaction among metals. Sex-stratification identified stronger associations of the overall mixture and log2-As with RTL among females, compared to males. Our study suggests that As and Hg may independently influence RTL in mid-childhood. Further studies are needed to investigate potential long-term impacts of metal-associated telomere shortening in childhood on health outcomes in adult life.

2.
BMC Biotechnol ; 24(1): 34, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783306

RESUMO

BACKGROUND: Signal peptide (SP) engineering has proven able to improve production of many proteins yet is a laborious process that still relies on trial and error. mRNA structure around the translational start site is important in translation initiation and has rarely been considered in this context, with recent improvements in in silico mRNA structure potentially rendering it a useful predictive tool for SP selection. Here we attempt to create a method to systematically screen candidate signal peptide sequences in silico based on both their nucleotide and amino acid sequences. Several recently released computational tools were used to predict signal peptide activity (SignalP), localization target (DeepLoc) and predicted mRNA structure (MXFold2). The method was tested with Bone Morphogenetic Protein 2 (BMP2), an osteogenic growth factor used clinically for bone regeneration. It was hoped more effective BMP2 SPs could improve BMP2-based gene therapies and reduce the cost of recombinant BMP2 production. RESULTS: Amino acid sequence analysis indicated 2,611 SPs from the TGF-ß superfamily were predicted to function when attached to BMP2. mRNA structure prediction indicated structures at the translational start site were likely highly variable. The five sequences with the most accessible translational start sites, a codon optimized BMP2 SP variant and the well-established hIL2 SP sequence were taken forward to in vitro testing. The top five candidates showed non-significant improvements in BMP2 secretion in HEK293T cells. All showed reductions in secretion versus the native sequence in C2C12 cells, with several showing large and significant decreases. None of the tested sequences were able to increase alkaline phosphatase activity above background in C2C12s. The codon optimized control sequence and hIL2 SP showed reasonable activity in HEK293T but very poor activity in C2C12. CONCLUSIONS: These results support the use of peptide sequence based in silico tools for basic predictions around signal peptide activity in a synthetic biology context. However, mRNA structure prediction requires improvement before it can produce reliable predictions for this application. The poor activity of the codon optimized BMP2 SP variant in C2C12 emphasizes the importance of codon choice, mRNA structure, and cellular context for SP activity.


Assuntos
Proteína Morfogenética Óssea 2 , Sinais Direcionadores de Proteínas , RNA Mensageiro , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/química , Sinais Direcionadores de Proteínas/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/química , Sequência de Aminoácidos , Conformação de Ácido Nucleico , Biologia Computacional/métodos , Engenharia de Proteínas/métodos , Células HEK293
3.
Environ Res ; 257: 119277, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821458

RESUMO

Fish consumption is one of the main sources of mercury (Hg) exposure, but few studies have examined Hg exposure from fish consumption among children. This study aimed to assess the frequency of fish intake and associations with Hg and other element concentrations among 700 three-year-old children from the New Hampshire Birth Cohort Study. Usual fish intake was derived from a validated food frequency questionnaire (Block Questionnaire for ages 2-7) and toenail element concentrations were determined using ICP-MS. Multiple linear regression analysis was used to assess the association between fish intake and toenail element concentrations. A mixture analysis, using Weighted quantile sum (WQS) regression, was used to estimate the relative contribution of fish consumption to element exposures. Twenty-three percent of children were reported to consume at least one fish meal/week on average during the previous 6 months. In adjusted linear regression models, children with any type of fish consumption versus no consumption had 108% (95% confidence interval (CI: 68%, 153%)) higher toenail Hg concentrations. To a lesser extent, children consuming "other fish (not fried) including tuna" and "fried fish or fish sticks" had 120% (95% CI: 82%, 164%), and 23% (95% CI: 2%, 51%) higher toenail concentrations, respectively, than those consuming no fish. Using WQS regression, Hg was the element most strongly related to fish consumption. Fish intake among young children was related to Hg exposure even at low levels of consumption. Future studies will need to determine the health consequences of this exposure.


Assuntos
Peixes , Mercúrio , Unhas , Humanos , Mercúrio/análise , Pré-Escolar , Unhas/química , Feminino , Masculino , Animais , Contaminação de Alimentos/análise , Alimentos Marinhos/análise , New Hampshire , Exposição Ambiental/análise , Dieta/estatística & dados numéricos , Exposição Dietética/análise , Estudos de Coortes
4.
Environ Res ; 256: 119170, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768888

RESUMO

BACKGROUND: Sparse research exists on predictors of element concentrations measured in deciduous teeth. OBJECTIVE: To estimate associations between maternal/child characteristics, elements measured in home tap water during pregnancy and element concentrations in the dentin of shed deciduous teeth. METHODS: Our analysis included 152 pregnant person-infant dyads followed from the second trimester through the end of the first postnatal year from the New Hampshire Birth Cohort Study. During pregnancy and early infancy, we collected dietary and sociodemographic information via surveys, measured elements in home tap water, and later collected naturally exfoliated teeth from child participants. We measured longitudinal deposition of elements in dentin using LA-ICP-MS. Multivariable linear mixed models were used to estimate associations between predictors and dentin element concentrations. RESULTS: We measured 12 elements in dentin including those previously reported (Ba, Mn, Pb, Sr, Zn) and less frequently reported (Al, As, Cd, Cu, Hg, Li, and W). A doubling of Pb or Sr concentrations in water was associated with higher dentin Pb or Sr respectively in prenatally formed [9% (95%CI: 3%, 15%); 3% (1%, 6%)] and postnatally formed [10% (2%, 19%); 6% (2%, 10%)] dentin. Formula feeding from birth to 6 weeks or 6 weeks to 4 months was associated with higher element concentrations in postnatal dentin within the given time period as compared to exclusive human milk feeding: Sr: 6 weeks: 61% (36%, 90%) and 4 months: 85% (54%, 121%); Ba: 6 weeks: 35% (3.3%, 77%) and 4 months: 42% (10%, 83%); and Li: 6 weeks: 61% (33%, 95%) and 4 months: 58% (31%, 90%). SIGNIFICANCE: These findings offer insights into predictors of dentin elements and potential confounders in exposure-health outcome relationships during critical developmental periods.


Assuntos
Dentina , Dente Decíduo , Humanos , Feminino , Dente Decíduo/química , New Hampshire , Dentina/química , Gravidez , Lactente , Coorte de Nascimento , Adulto , Masculino , Dieta , Recém-Nascido , Estudos de Coortes , Adulto Jovem
5.
Radiology ; 309(1): e230984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37874235

RESUMO

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Assuntos
Meios de Contraste , Compostos Organometálicos , Ratos , Humanos , Animais , Gadolínio/farmacocinética , Distribuição Tecidual , Estudos Prospectivos , Encéfalo , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos
6.
Pediatr Res ; 93(5): 1410-1418, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35906307

RESUMO

BACKGROUND: Prenatal cadmium (Cd) exposure has been implicated in both placental toxicity and adverse neurobehavioral outcomes. Placental microRNAs (miRNAs) may function to developmentally program adverse pregnancy and newborn health outcomes in response to gestational Cd exposure. METHODS: In a subset of the Rhode Island Child Health Study (RICHS, n = 115) and the New Hampshire Birth Cohort Study (NHBCS, = 281), we used small RNA sequencing and trace metal analysis to identify Cd-associated expression of placental miRNAs using negative binomial generalized linear models. We predicted mRNAs targeted by Cd-associated miRNAs and relate them to neurobehavioral outcomes at birth through the integration of transcriptomic data and summary scores from the NICU Network Neurobehavioral Scale (NNNS). RESULTS: Placental Cd concentrations are significantly associated with the expression level of five placental miRNAs in NHBCS, with similar effect sizes in RICHS. These miRNA target genes overrepresented in nervous system development, and their expression is correlated with NNNS metrics suggestive of atypical neurobehavioral outcomes at birth. CONCLUSIONS: Gestational Cd exposure is associated with the expression of placental miRNAs. Predicted targets of these miRNAs are involved in nervous system development and may also regulate placental physiology, allowing their dysregulation to modify developmental programming of early life health outcomes. IMPACT: This research aims to address the poor understanding of the molecular mechanisms governing adverse pregnancy and newborn health outcomes in response to Gestational cadmium (Cd) exposure. Our results outline a robust relationship between Cd-associated placental microRNA expression and NICU Network Neurobehavioral Scales (NNNS) at birth indicative of atypical neurobehavior. This study utilized healthy mother-infant cohorts to describe the role of Cd-associated dysregulation of placental microRNAs as a potential mechanism by which adverse neurobehavioral outcomes are developmentally programmed.


Assuntos
MicroRNAs , Placenta , Recém-Nascido , Criança , Humanos , Gravidez , Feminino , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cádmio , Estudos de Coortes , Parto
7.
Environ Res ; 238(Pt 2): 117234, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793590

RESUMO

Prenatal exposure to metals/metalloids, even at common US population levels, may pose risks to fetal health, and affect children's lung function. Yet, the combined effects of simultaneous prenatal exposures on children's lung function remain largely unexplored. This study analyzed 11 metals (As speciation, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Sn, Zn) in maternal urine during weeks 24-28 of gestation and evaluated lung function, including forced vital capacity (FVC) and forced expiratory volume in the first second of expiration (FEV1), in 316 US mother-child pairs at around age 7. We used Bayesian Kernel Machine Regression (BKMR), weighted quantile sum regression (WQSR), and multiple linear regression to examine the association between metal mixture exposure and children's lung function, adjusting for maternal smoking, child age, sex, and height. In BKMR models assessing combined exposure effects, limited evidence of metal non-linearity or interactions was found. Nevertheless, Co, As species, and Pb showed a negative association, while Mo exhibited a positive association with children's FVC and FEV1, with other metals held constant at their medians. The weighted index, from WQSR analysis assessing the cumulative impact of all metals, highlighted prenatal Mo with the highest positive weight, and Co, As, and Sb with the most substantial negative weights on children's FVC and FEV1. Urinary Co and Pb were negatively associated with FVC (ß = -0.09, 95% confidence interval (CI) (-0.18; -0.01) and ß = -0.07, 95% CI (-0.13; 0.00), respectively). Co was also negatively associated with FEV1 (ß = -0.09, 95% CI (-0.18; 0.00). There was a negative association between As and FVC, and a positive association between Mo and both FVC and FEV1, though with wide confidence intervals. Our findings suggest that prenatal trace element exposures may impact children's lung function, emphasizing the importance of reducing toxic exposures and maintaining adequate nutrient levels.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Criança , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , New Hampshire , Teorema de Bayes , Chumbo , Pulmão
8.
Hum Mol Genet ; 29(9): 1417-1425, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167558

RESUMO

Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Ligação a DNA/genética , Proteínas do Esmalte Dentário/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Ameloblastos/metabolismo , Ameloblastos/patologia , Amelogênese Imperfeita/patologia , Proteínas Relacionadas à Autofagia/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/patologia , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Regiões Promotoras Genéticas/genética , Dente/crescimento & desenvolvimento , Dente/patologia , Sequenciamento do Exoma
9.
Environ Res ; 204(Pt A): 111939, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34461121

RESUMO

BACKGROUND: Prenatal exposure to heavy metals has been linked to a variety of adverse outcomes in newborn health and later life. Toxic metals such as cadmium (Cd), manganese (Mn) and lead (Pb) have been implicated to negatively affect newborn neurobehavior. Placental levels of these metals may provide additional understandings on the link between prenatal toxic metal exposures and neurobehavioral performances in newborns. OBJECTIVE: To evaluate associations between placental concentrations of toxic metals and newborn neurobehavioral performance indicated through the NICU Network Neurobehavioral Scales (NNNS) latent profiles. METHOD: In the Rhode Island Child Health Study cohort (n = 625), newborn neurobehavioral performance was assessed with NNNS, and a latent profile analysis was used to define five discrete neurobehavioral profiles based on summary scales. Using multinomial logistic regression, we determined whether increased levels of placental toxic metals Cd, Mn and Pb associated with newborns assigned to the profile demonstrating atypical neurobehavioral performances. RESULTS: Every doubling in placenta Cd concentration was associated with increased odds of newborns belonging to the atypical neurobehavior profile (OR: 2.72, 95% CI [1.09, 6.79]). Detectable placental Pb also demonstrated an increased odds of newborns assignment to the atypical profile (OR: 3.71, 95% CI [0.97, 13.96]) compared to being in the typical neurobehavioral profile. CONCLUSIONS: Toxic metals Cd and Pb measured in placental tissue may adversely impact newborn neurobehavior. Utilizing the placenta as a prenatal toxic metal exposure biomarker is useful in elucidating the associated impacts of toxic metals on newborn health.


Assuntos
Unidades de Terapia Intensiva Neonatal , Metais Pesados , Criança , Saúde da Criança , Feminino , Humanos , Recém-Nascido , Metais Pesados/toxicidade , Placenta , Gravidez , Rhode Island
10.
Environ Res ; 214(Pt 4): 114099, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35998698

RESUMO

Gut bacteria are at the interface of environmental exposures and their impact on human systems, and may alter host absorption, metabolism, and excretion of toxic chemicals. We investigated whether arsenic-metabolizing bacterial gene pathways related to urinary arsenic concentrations. In the New Hampshire Birth Cohort Study, urine and stool samples were obtained at six weeks (n = 186) and one year (n = 190) of age. Inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) were quantified in infant urine samples using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Total arsenic exposure (tAs) was summarized as Σ(iAs, MMA, DMA) and log2-transformed. Fecal microbial DNA underwent metagenomic sequencing and the relative abundance of bacterial gene pathways were grouped as KEGG Orthologies (KOs) using BioBakery algorithms. Arsenic metabolism KOs with >80% prevalence were log2-transformed and modeled continuously using linear regression, those with <10% were not evaluated and those with 10-80% prevalence were analyzed dichotomously (detect/non-detect) using logistic regression. In the first set of models, tAs was regressed against KO relative abundance or detection adjusting for age at sample collection and child's sex. Effect modification by delivery mode was assessed in stratified models. In the second set of models, the association between the relative abundance/detection of the KOs and arsenic speciation (%iAs, %MMA, %DMA) was quantified with linear regression. Urinary tAs was associated with the increased relative abundance/detection odds of several arsenic-related KOs, including K16509, an arsenate reductase transcriptional regulator, with stronger associations among six-week-olds than one-year-olds. K16509 was also associated with decreased %MMA and increased %DMA at six weeks and one year. Notably, many associations were stronger among operatively-delivered than vaginally-delivered infants. Our findings suggest associations between arsenic-metabolizing bacteria in the infant gut microbiome and urinary arsenic excretion.


Assuntos
Arsênio , Arsenicais , Arsênio/análise , Arsenicais/análise , Bactérias/genética , Bactérias/metabolismo , Coorte de Nascimento , Ácido Cacodílico/urina , Criança , Estudos de Coortes , Humanos , Estudos Prospectivos
11.
Part Fibre Toxicol ; 19(1): 56, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945578

RESUMO

BACKGROUND: Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS: Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS: Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndromes Neurotóxicas , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Encéfalo , Feminino , Humanos , Ferro/farmacologia , Masculino , Metais , Camundongos , Síndromes Neurotóxicas/etiologia , Neurotransmissores/farmacologia , Material Particulado/análise , Material Particulado/toxicidade
12.
Environ Geochem Health ; 44(11): 4077-4089, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34981270

RESUMO

There is limited information concerning the distribution of mercury in rice, particularly in African rice. The objective was to compare the distribution of total mercury (THg) and methylmercury (MeHg) in African rice (Oryza glaberrima Steud.) and Asian rice (O. sativa L.). It is hypothesized that increased mineral accumulation and greater stress tolerance in O. glaberrima will affect the uptake and distribution of THg and MeHg, compared to O. sativa. Rice varieties from the Republic of Mali, including O. glaberrima (n =1) and O. sativa (n = 2), were cultivated in a greenhouse, in mercury-spiked soil (50 mg/kg) (n =3 replicates/variety). THg and MeHg concentrations were analyzed in the grain (brown rice), and the THg distribution was analyzed using laser ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS). THg and MeHg concentrations did not differ between O. glaberrima and O. sativa grain. However, in both O. sativa varieties, THg was highly concentrated in the scutellum, which surrounds the embryo and is removed during polishing. Conversely, in O. glaberrima grain, THg was widely distributed throughout the endosperm, the edible portion of the grain. Differences in the THg distribution in O. glaberrima grain, compared to O. sativa, may elevate the risk of mercury exposure through ingestion of polished rice. The novelty of this study includes the investigation of a less-studied rice species (O. glaberrima), the use of a highly sensitive elemental imaging technique (LA-ICP-MS), and its finding of a different grain THg distribution in O. glaberrima than has been observed in O. sativa.


Assuntos
Terapia a Laser , Mercúrio , Compostos de Metilmercúrio , Oryza , Oryza/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Solo/química , Grão Comestível/química
13.
Chembiochem ; 22(1): 232-240, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32961017

RESUMO

The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody-binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL , BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug-bound-like conformation. These proof-of-concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/análise , Proteína bcl-X/análise , Apoptose , Humanos , Ligantes , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ligação Proteica , Conformação Proteica , Proteína bcl-X/metabolismo
14.
Genet Med ; 23(11): 2171-2177, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230635

RESUMO

PURPOSE: The availability of genetic test data within the electronic health record (EHR) is a pillar of the US vision for an interoperable health IT infrastructure and a learning health system. Although EHRs have been highly investigated, evaluation of the information systems used by the genetic labs has received less attention-but is necessary for achieving optimal interoperability. This study aimed to characterize how US genetic testing labs handle their information processing tasks. METHODS: We followed a qualitative research method that included interviewing lab representatives and a panel discussion to characterize the information flow models. RESULTS: Ten labs participated in the study. We identified three generic lab system models and their relevant characteristics: a backbone system with additional specialized systems for interpreting genetic results, a brokering system that handles housekeeping and communication, and a single primary system for results interpretation and report generation. CONCLUSION: Labs have heterogeneous workflows and generally have a low adoption of standards when sending genetic test reports back to EHRs. Core interpretations are often delivered as free text, limiting their computational availability for clinical decision support tools. Increased provision of genetic test data in discrete and standard-based formats by labs will benefit individual and public health.


Assuntos
Sistemas de Informação em Laboratório Clínico , Comunicação , Registros Eletrônicos de Saúde , Testes Genéticos , Humanos , Pesquisa Qualitativa
15.
Genet Med ; 23(11): 2178-2185, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429527

RESUMO

PURPOSE: Genetic laboratory test reports can often be of limited computational utility to the receiving clinical information systems, such as clinical decision support systems. Many health-care interoperability (HC) standards aim to tackle this problem, but the perceived benefits, challenges, and motivations for implementing HC interoperability standards from the labs' perspective has not been systematically assessed. METHODS: We surveyed genetic testing labs across the United States and conducted a semistructured interview with responding lab representatives. We conducted a thematic analysis of the interview transcripts to identify relevant themes. A panel of experts discussed and validated the identified themes. RESULTS: Nine labs participated in the interview, and 24 relevant themes were identified within five domains. These themes included the challenge of complex and changing genetic knowledge, the motivation of competitive advantage, provided financial incentives, and the benefit of supporting the learning health system. CONCLUSION: Our study identified the labs' perspective on various aspects of implementing HC interoperability standards in producing and communicating genetic test reports. Interviewees frequently reported that increased adoption of HC standards may be motivated by competition and programs incentivizing and regulating the incorporation of interoperability standards for genetic test data, which could benefit quality control, research, and other areas.


Assuntos
Laboratórios , Motivação , Atenção à Saúde , Testes Genéticos , Humanos , Informática , Estados Unidos
16.
J Anal At Spectrom ; 36(11): 2431-2438, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35992610

RESUMO

Tungsten has recently emerged as a potential toxicant and is known to heterogeneously deposit in bone as reactive polytungstates. Zinc, which accumulates in regions of bone remodeling, also has a heterogenous distribution in bone. Determining the local concentrations of these metals will provide valuable information about their mechanisms of uptake and action. A series of bone (BN), 7:3 hydroxyapatite:collagen (HC), and hydroxyapatite (HA) standards were spiked with tungsten and zinc and used as calibration standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of bone tissue. The analytical performance of these standards was studied and validated at different step sizes using NIST SRM 1486 Bone Meal. The effect of matrix-matched calibration was assessed by comparing the calibration with BN and HC standards, which incorporate both inorganic and organic components of bone, to that of HA standards. HC standards were found to be more homogenous (RSD < 10%) and provide a linear calibration with better accuracy (R2 > 0.994) compared to other standards. The limits of detection for HC at a 15 µm step size were determined to be 0.24 and 0.012 µg g-1 for zinc and tungsten, respectively. Using this approach, we quantitatively measured zinc and tungsten deposits in the femoral bone of a mouse exposed to 15 µg mL-1 tungsten for four weeks. Localized concentrations of zinc (942 µg g-1) and tungsten (15.7 µg g-1) at selected regions of enrichment were substantially higher than indicated by bulk measurements of these metals.

17.
Environ Res ; 201: 111385, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129869

RESUMO

The immunotoxic impacts of mercury during early life is poorly understood. We investigated the associations between gestational mercury exposure and frequency of cord blood T cells as well as placental gene expression. Frequency of natural Treg cells was positively associated with prenatal and postpartum mercury toenail concentrations. Frequency of NKT and activated naïve Th cells was positively associated with prenatal toenail mercury concentrations and number of maternal silver-mercury dental amalgams, respectively. Placental gene expression analyses revealed distinct gene signatures associated with mercury exposure. Decreased placental expression of a histone demethylase, KDM4DL, was associated with both higher prenatal and postpartum maternal toenail mercury levels among male infants and remained statistically significant after adjustment for fish and seafood consumption. The results suggest that gestational exposure to mercury concentrations contribute to alterations in both T cells and gene expression in placenta at birth. These alterations may inform mechanisms of mercury immunotoxicity.


Assuntos
Mercúrio , Feminino , Sangue Fetal/química , Humanos , Masculino , Exposição Materna/efeitos adversos , Mercúrio/análise , Mercúrio/toxicidade , Placenta/química , Gravidez , Transcriptoma
18.
J Manipulative Physiol Ther ; 44(4): 330-343, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33896602

RESUMO

OBJECTIVE: In this cross-sectional study, we examined correlates of manual therapy (spinal manipulation, massage therapy) and/or acupuncture use in a population engaging in conventional pain care in West Virginia. METHODS: Participants were patients (aged 18+ years) from 4 Appalachian pain and rheumatology clinics. Of those eligible (N = 343), 88% completed an anonymous survey including questions regarding health history, pain distress (Short Form Global Pain Scale), prescription medications, and current use of complementary health approaches for pain management. We used age-adjusted logistic regression to assess the relation of sociodemographic, lifestyle, and health-related factors to use of manual therapies and/or acupuncture for pain (complete-case N = 253). RESULTS: The majority of participants were white (92%), female (56%), and middle aged (mean age, 54.8 ± 13.4 years). Nearly all reported current chronic pain (94%), and 56% reported ≥5 comorbidities (mean, 5.6 ± 3.1). Manual therapy and/or acupuncture was used by 26% of participants for pain management (n = 66). Current or prior opioid use was reported by 37% of those using manual therapies. Manual therapy and/or acupuncture use was significantly elevated in those using other complementary health approaches (adjusted odds ratio, 3.0; 95% confidence interval, 1.5-5.8). Overall Short Form Global Pain Scale scores were not significantly associated with use of manual therapies and/or acupuncture after adjustment (adjusted odds ratio per 1-point increase, 1.01; 95% confidence interval, 1.00-1.03). CONCLUSION: We found no evidence for an association of pain-related distress and use of manual therapies and/or acupuncture, but identified a strong association with use of dietary supplements and mind-body therapies. Larger studies are needed to further examine these connections in the context of clinical outcomes and cost-effectiveness in rural adults given their high pain burden and unique challenges in access to care.


Assuntos
Terapia por Acupuntura/estatística & dados numéricos , Dor Crônica/terapia , Dor Lombar/terapia , Manipulação da Coluna/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , População Rural/estatística & dados numéricos , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Massagem/estatística & dados numéricos , Pessoa de Meia-Idade , Manejo da Dor , Inquéritos e Questionários , West Virginia , Adulto Jovem
20.
Genet Med ; 22(5): 867-877, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949313

RESUMO

PURPOSE: To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from Kabuki syndrome type 1 (KS1). METHODS: Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54 amino acids flanked by Val3527 and Lys3583, were identified and phenotyped. Functional tests were performed to study their pathogenicity and understand the disease mechanism. RESULTS: The consistent clinical features of the affected individuals, from seven unrelated families, included choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability. The frequency of clinical features, objective software-based facial analysis metrics, and genome-wide peripheral blood DNA methylation patterns in these patients were significantly different from that of KS1. Circular dichroism spectroscopy indicated that these MVs perturb KMT2D secondary structure through an increased disordered to ɑ-helical transition. CONCLUSION: KMT2D MVs located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely result in disease through a dominant negative mechanism.


Assuntos
Anormalidades Múltiplas , Doenças Hematológicas , Doenças Vestibulares , Anormalidades Múltiplas/genética , Face/anormalidades , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Humanos , Mutação , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa