Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 145(33): 18447-18454, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552123

RESUMO

Molecular electronic spin qubits have great potential for use in quantum information science applications because their structure can be rationally tuned using synthetic chemistry. Their integration into a new class of materials, ion-paired frameworks, allows for the formation of ordered arrays of these molecular spin qubits. Three ion-paired frameworks with varying densities of paramagnetic Cu(II) porphyrins were isolated as micron-sized crystals suitable for characterization by single-crystal X-ray diffraction. Pulse-electron paramagnetic resonance (EPR) spectroscopy probed the spin coherence of these materials at temperatures up to 140 K. The crystals with the longest Cu-Cu distances had a spin-spin relaxation time (Tm) of 207 ns and a spin-lattice relaxation time (T1) of 1.8 ms at 5 K, which decreased at elevated temperature because of spin-phonon coupling. Crystals with shorter Cu-Cu distances also had lower T1 values because of enhanced cross-relaxation from qubit-qubit dipolar coupling. Frameworks with shorter Cu-Cu distances exhibited lower Tm values because of the increased interactions between qubits within the frameworks. Incorporating molecular electronic spin qubits in ion-paired frameworks enables control of composition, spacing, and interqubit interactions, providing a rational means to extend spin relaxation times.

2.
J Am Chem Soc ; 144(40): 18607-18618, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178390

RESUMO

Ultrafast triplet formation in donor-acceptor (D-A) systems typically occurs by spin-orbit charge-transfer intersystem crossing (SOCT-ISC), which requires a significant orbital angular momentum change and is thus usually observed when the adjacent π systems of D and A are orthogonal; however, the results presented here show that subnanosecond triplet formation occurs in a series of D-A cocrystals that form one-dimensional cofacial π stacks. Using ultrafast transient absorption microscopy, photoexcitation of D-A single cocrystals, where D is coronene (Cor) or pyrene (Pyr) and A is N,N-bis(3'-pentyl)-perylene-3,4:9,10-bis(dicarboximide) (C5PDI) or naphthalene-1,4:5,8-tetracarboxydianhydride (NDA), results in formation of the charge transfer (CT) excitons Cor•+-C5PDI•-, Pyr•+-C5PDI•-, Cor•+-NDA•-, and Pyr•+-NDA•- in <300 fs, while triplet exciton formation occurs in τ = 125, 106, 484, and 958 ps, respectively. TDDFT calculations show that the SOCT-ISC rates correlate with charge delocalization in the CT exciton state. In addition, time-resolved EPR spectroscopy shows that Cor•+-C5PDI•- and Pyr•+-C5PDI•- recombine to form localized 3*C5PDI excitons with zero-field splittings of |D| = 1170 and 1250 MHz, respectively. In contrast, Cor•+-NDA•- and Pyr•+-NDA•- give triplet excitons in which |D| is only 1240 and 690 MHz, respectively, compared to that of NDA (2091 MHz), which is the lowest energy localized triplet exciton, indicating that the Cor-NDA and Pyr-NDA triplet excitons have significant CT character. These results show that charge delocalization in CT excitons impacts both ultrafast triplet formation as well as the CT character of the resultant triplet states.


Assuntos
Perileno , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Naftalenos , Perileno/química , Pirenos
3.
J Am Chem Soc ; 144(5): 2276-2283, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099963

RESUMO

Multiexciton quintet states, 5(TT), photogenerated in organic semiconductors using singlet fission (SF), consist of four quantum entangled spins, promising to enable new applications in quantum information science. However, the factors that determine the spin coherence of these states remain underexplored. Here, we engineer the packing of tetracene molecules within single crystals of 5,12-bis(tricyclohexylsilylethynyl)tetracene (TCHS-tetracene) to demonstrate a 5(TT) state that exhibits promising spin qubit properties, including a coherence time, T2, = 3 µs at 10 K, a population lifetime, Tpop, = 130 µs at 5 K, and stability even at room temperature. The single-crystal platform also enables global alignment of the spins and, consequently, individual addressability of the spin-sublevel transitions. Decoherence mechanisms, including exciton diffusion, electronic dipolar coupling, and nuclear hyperfine interactions, are elucidated, providing design principles for increasing T2 and the operational temperature of 5(TT). By dynamically decoupling 5(TT) from the surrounding spin bath, T2 = 10 µs is achieved. These results demonstrate the viability of harnessing singlet fission to initiate multiple electron spins in a well-defined quantum state for next-generation molecular-based quantum technologies.

4.
Nano Lett ; 20(11): 8258-8266, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33026227

RESUMO

With their ns2 np3 valence electronic configuration, pnictogens are the only system to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light pnictogens crystallize in the A17 phase, and bulk heavier elements prefer the A7 phase. Herein, we demonstrate that the A17 of heavy pnictogens can be stabilized in antimonene grown on weakly interacting surfaces and that it undergoes a spontaneous thickness-driven transformation to the stable A7 phase. At a critical thickness of ∼4 nm, A17 antimony transforms from AB- to AA-stacked α-antimonene by a diffusionless shuffle transition followed by a gradual relaxation to the A7 phase. Furthermore, the competition between A7- and A17-like bonding affects the electronic structure of the intermediate phase. These results highlight the critical role of the atomic structure and substrate-layer interactions in shaping the stability and properties of layered materials, thus enabling a new degree of freedom to engineer their performance.

5.
Nano Lett ; 18(2): 898-906, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29382200

RESUMO

It was recently discovered that the chemical vapor deposition (CVD) of CH4 on Ge(001) can directly yield long, narrow, semiconducting nanoribbons of graphene with smooth armchair edges. These nanoribbons have exceptional charge transport properties compared with nanoribbons grown by other methods. However, the nanoribbons nucleate at random locations and at random times, problematically giving rise to width and bandgap polydispersity, and the mechanisms that drive the anisotropic crystal growth that produces the nanoribbons are not understood. Here, we study and engineer the seed-initiated growth of graphene nanoribbons on Ge(001). The use of seeds decouples nucleation and growth, controls where growth occurs, and allows graphene to grow with lattice orientations that do not spontaneously form without seeds. We discover that when the armchair direction (i.e., parallel to C-C bonds) of the seeds is aligned with the Ge⟨110⟩ family of directions, the growth anisotropy is maximized, resulting in the formation of nanoribbons with high-aspect ratios. In contrast, increasing misorientation from Ge⟨110⟩ yields decreasingly anisotropic crystals. Measured growth rate data are used to generate a construction analogous to a kinetic Wulff plot that quantitatively predicts the shape of graphene crystals on Ge(001). This knowledge is employed to fabricate regularly spaced, unidirectional arrays of nanoribbons and to significantly improve their uniformity. These results show that seed-initiated graphene synthesis on Ge(001) will be a viable route for creating wafer-scale arrays of narrow, semiconducting, armchair nanoribbons with rationally controlled placement and alignment for a wide range of semiconductor electronics technologies, provided that dense arrays of sub-10 nm seeds can be uniformly fabricated in the future.

6.
Nano Lett ; 15(11): 7414-20, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26506006

RESUMO

Epitaxially oriented wafer-scale graphene grown directly on semiconducting Ge substrates is of high interest for both fundamental science and electronic device applications. To date, however, this material system remains relatively unexplored structurally and electronically, particularly at the atomic scale. To further understand the nature of the interface between graphene and Ge, we utilize ultrahigh vacuum scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) along with Raman and X-ray photoelectron spectroscopy to probe interfacial atomic structure and chemistry. STS reveals significant differences in electronic interactions between graphene and Ge(110)/Ge(111), which is consistent with a model of stronger interaction on Ge(110) leading to epitaxial growth. Raman spectra indicate that the graphene is considerably strained after growth, with more point-to-point variation on Ge(111). Furthermore, this native strain influences the atomic structure of the interface by inducing metastable and previously unobserved Ge surface reconstructions following annealing. These nonequilibrium reconstructions cover >90% of the surface and, in turn, modify both the electronic and mechanical properties of the graphene overlayer. Finally, graphene on Ge(001) represents the extreme strain case, where graphene drives the reorganization of the Ge surface into [107] facets. From this work, it is clear that the interaction between graphene and the underlying Ge is not only dependent on the substrate crystallographic orientation, but is also tunable and strongly related to the atomic reconfiguration of the graphene-Ge interface.

7.
Nano Lett ; 14(2): 682-6, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24382263

RESUMO

Field-effect transistors (FETs) that are stretchable up to 50% without appreciable degradation in performance are demonstrated. The FETs are based on buckled thin films of polyfluorene-wrapped semiconducting single-walled carbon nanotubes (CNTs) as the channel, a flexible ion gel as the dielectric, and buckled metal films as electrodes. The buckling of the CNT film enables the high degree of stretchability while the flexible nature of the ion gel allows it to maintain a high quality interface with the CNTs during stretching. An excellent on/off ratio of >10(4), a field-effect mobility of 10 cm(2) · V(-1) · s(-1), and a low operating voltage of <2 V are achieved over repeated mechanical cycling, with further strain accommodation possible. Deformable FETs are expected to facilitate new technologies like stretchable displays, conformal devices, and electronic skins.

8.
Small ; 10(16): 3299-306, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24719253

RESUMO

Using a novel two-step fabrication scheme, we create highly semiconducting-enriched single-walled carbon nanotube (sSWNT) bulk heterojunctions (BHJs) by first creating highly porous interconnected sSWNT aerogels (sSWNT-AEROs), followed by back-filling the pores with [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM). We demonstrate sSWNT-AERO structures with density as low as 2.5 mg cm(-3), porosity as high as 99.8%, and diameter of sSWNT fibers ≤ 10 nm. Upon spin coating with PC(71)BM, the resulting sSWNT-AERO-PC(71)BM nanocomposites exhibit highly quenched sSWNT photoluminescence, which is attributed to the large interfacial area between the sSWNT and PC(71)BM phases, and an appropriate sSWNT fiber diameter that matches the inter-sSWNT exciton migration length. Employing the sSWNT-AERO-PC(71)BM BHJ structure, we report optimized solar cells with a power conversion efficiency of 1.7%, which is exceptional among polymer-like solar cells in which sSWNTs are designed to replace either the polymer or fullerene component. A fairly balanced photocurrent is achieved with 36% peak external quantum efficiency (EQE) in the visible and 19% peak EQE in the near-infrared where sSWNTs serve as electron donors and photoabsorbers. Our results prove the effectiveness of this new method in controlling the sSWNT morphology in BHJ structures, suggesting a promising route towards highly efficient sSWNT photoabsorbing solar cells.

9.
Nat Commun ; 13(1): 2992, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637229

RESUMO

Semiconducting graphene nanoribbons are promising materials for nanoelectronics but are held back by synthesis challenges. Here we report that molecular-scale carbon seeds can be exploited to initiate the chemical vapor deposition (CVD) synthesis of graphene to generate one-dimensional graphene nanoribbons narrower than 5 nm when coupled with growth phenomena that selectively extend seeds along a single direction. This concept is demonstrated by subliming graphene-like polycyclic aromatic hydrocarbon molecules onto a Ge(001) catalyst surface and then anisotropically evolving size-controlled nanoribbons from the seeds along [Formula: see text] of Ge(001) via CH4 CVD. Armchair nanoribbons with mean normalized standard deviation as small as 11% (3 times smaller than nanoribbons nucleated without seeds), aspect ratio as large as 30, and width as narrow as 2.6 nm (tunable via CH4 exposure time) are realized. Two populations of nanoribbons are compared in field-effect transistors (FETs), with off-current differing by 150 times because of the nanoribbons' different widths.


Assuntos
Doenças Cardiovasculares , Grafite , Nanotubos de Carbono , Catálise , Grafite/química , Humanos , Nanotubos de Carbono/química
10.
ACS Nano ; 15(3): 3674-3708, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33656860

RESUMO

Graphene nanoribbons (GNRs) have recently emerged as promising candidates for channel materials in future nanoelectronic devices due to their exceptional electronic, thermal, and mechanical properties and chemical inertness. However, the adoption of GNRs in commercial technologies is currently hampered by materials science and integration challenges pertaining to synthesis and devices. In this Review, we present an overview of the current status of challenges, recent breakthroughs toward overcoming these challenges, and possible future directions for the field of GNR electronics. We motivate the need for exploration of scalable synthetic techniques that yield atomically precise, placed, registered, and oriented GNRs on CMOS-compatible substrates and stimulate ideas for contact and dielectric engineering to realize experimental performance close to theoretically predicted metrics. We also briefly discuss unconventional device architectures that could be experimentally investigated to harness the maximum potential of GNRs in future spintronic and quantum information technologies.

11.
Sci Adv ; 7(37): eabh0640, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516885

RESUMO

Semiconducting carbon nanotubes promise faster performance and lower power consumption than Si in field-effect transistors (FETs) if they can be aligned in dense arrays. Here, we demonstrate that nanotubes collected at a liquid/liquid interface self-organize to form two-dimensional (2D) nematic liquid crystals that globally align with flow. The 2D liquid crystals are transferred onto substrates in a continuous process generating dense arrays of nanotubes aligned within ±6°, ideal for electronics. Nanotube ordering improves with increasing concentration and decreasing temperature due to the underlying liquid crystal phenomena. The excellent alignment and uniformity of the transferred assemblies enable FETs with exceptional on-state current density averaging 520 µA µm−1at only −0.6 V, and variation of only 19%. FETs with ion gel top gates demonstrate subthreshold swing as low as 60 mV decade−1. Deposition across a 10-cm substrate is achieved, evidencing the promise of 2D nanotube liquid crystals for commercial semiconductor electronics.

12.
Nat Commun ; 11(1): 4151, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814775

RESUMO

Directed self-assembly of block copolymers (BCPs) enables nanofabrication at sub-10 nm dimensions, beyond the resolution of conventional lithography. However, directing the position, orientation, and long-range lateral order of BCP domains to produce technologically-useful patterns is a challenge. Here, we present a promising approach to direct assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition. Pairs of boundaries are formed at the edges of isolated stripes on a background substrate. Vertical lamellae nucleate at and are pinned by chemical contrast at each stripe/substrate boundary, align parallel to boundaries, selectively propagate from boundaries into stripe interiors (whereas horizontal lamellae form on the background), and register to wide stripes to multiply the feature density. Ordered BCP line arrays with half-pitch of 6.4 nm are demonstrated on stripes >80 nm wide. Boundary-directed epitaxy provides an attractive path towards assembling, creating, and lithographically defining materials on sub-10 nm scales.

13.
J Phys Chem Lett ; 10(15): 4266-4272, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31287706

RESUMO

At widths below 10 nm, armchair graphene nanoribbons become semiconductors. One promising route to synthesize nanoribbons is chemical vapor deposition (CVD) of hydrocarbons on Ge(001), and synthesis from seeds reduces nanoribbon polydispersity. In this contribution, we advance the seed-initiated synthesis of nanoribbons and explore the impact of seed size and nanoribbon spacing on growth kinetics. Periodic arrays of graphene seeds are lithographically patterned and etched to reduce their diameter. The viability of initiating synthesis from sub-5 nm seeds is demonstrated, and the pitch between nanoribbons is reduced from 500 to 50 nm to show that crowding effects do not perturb nanoribbon growth kinetics. The invariance of kinetics with pitch in combination with density functional theory (DFT) calculations indicate that (1) the growth species for synthesis has a diffusion length of ≪50 nm and/or (2) the kinetics are strongly attachment-limited. These results demonstrate that seed-initiated synthesis on Ge(001) is a promising route for creating dense arrays of armchair graphene nanoribbons for semiconductor electronics applications.

14.
Adv Mater ; 31(21): e1900569, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30968486

RESUMO

Van der Waals (vdW) heterostructures have recently been introduced as versatile building blocks for a variety of novel nanoscale and quantum technologies. Harnessing the unique properties of these heterostructures requires a deep understanding of the involved interfacial interactions and a meticulous control of the growth of 2D materials on weakly interacting surfaces. Although several epitaxial vdW heterostructures have been achieved experimentally, the mechanisms governing their synthesis are still nebulous. With this perspective, herein, the growth dynamics of antimonene on graphene are investigated in real time. In situ low-energy electron microscopy reveals that nucleation predominantly occurs on 3D nuclei followed by a self-limiting lateral growth with morphology sensitive to the deposition rate. Large 2D layers are observed at high deposition rates, whereas lower growth rates trigger an increased multilayer nucleation at the edges as they become aligned with the Z2 orientation leading to atoll-like islands with thicker, well-defined bands. This complexity of the vdW growth is elucidated based on the interplay between the growth rate, surface diffusion, and edges orientation. This understanding lays the groundwork for a better control of the growth of vdW heterostructures, which is critical to their large-scale integration.

15.
Nanoscale ; 11(11): 4864-4875, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30821309

RESUMO

Chemical vapor deposition of CH4 on Ge(001) can enable anisotropic growth of narrow, semiconducting graphene nanoribbons with predominately smooth armchair edges and high-performance charge transport properties. However, such nanoribbons are not aligned in one direction but instead grow perpendicularly, which is not optimal for integration into high-performance electronics. Here, it is demonstrated that vicinal Ge(001) substrates can be used to synthesize armchair nanoribbons, of which ∼90% are aligned within ±1.5° perpendicular to the miscut. When the growth rate is slow, graphene crystals evolve as nanoribbons. However, as the growth rate increases, the uphill and downhill crystal edges evolve asymmetrically. This asymmetry is consistent with stronger binding between the downhill edge and the Ge surface, for example due to different edge termination as shown by density functional theory calculations. By tailoring growth rate and time, nanoribbons with sub-10 nm widths that exhibit excellent charge transport characteristics, including simultaneous high on-state conductance of 8.0 µS and a high on/off conductance ratio of 570 in field-effect transistors, are achieved. Large-area alignment of semiconducting ribbons with promising charge transport properties is an important step towards understanding the anisotropic nanoribbon growth and integrating these materials into scalable, future semiconductor technologies.

16.
ACS Nano ; 12(8): 7855-7865, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-29995380

RESUMO

Laminates made of graphene oxide nanosheets have been shown to exhibit high water permeance and salt rejection and, therefore, have generated immense interest from the scientific community due to their potential in separation applications. However, there is no clear consensus on the water-transport pathways through such laminates. In this study, we synthesized chemically identical graphene oxide nanosheets with 2 orders of magnitude difference in lateral sizes and measured water permeance through laminates of different thicknesses fabricated by pressure-assisted deposition of these nanosheets. Our results reveal that water permeance through these laminates is nearly the same despite such massive difference in lateral sheet size. Furthermore, we simulated fluid flow through laminates using an interconnected nanochannel network model for comparison with experiments. The simulations in combination with the experimental data show that it is unlikely that the dominant fluid transport pathway is a circuitous, lateral pathway around individual sheets, as has been proposed in some studies. Rather, nonideal factors including trans-sheet flow through pinhole defects in sheet interiors and/or flow-through regions arising from imperfect stacking in the laminates can significantly affect the fluid transport pathways. The presence of such nonidealities is also supported by thickness- and time-dependent measurements of permeance and by infrared spectroscopy, which indicates that water predominantly adopts a bulk-like structure in the laminates. These analyses are significant steps toward understanding water transport through graphene oxide laminates and provide further insight toward the structure of water inside these materials, which could have immense potential in next-generation separation applications.

17.
ACS Nano ; 11(9): 8924-8929, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28880526

RESUMO

The growth of graphene on Ge(001) via chemical vapor deposition can be highly anisotropic, affording the facile synthesis of crystallographically controlled, narrow, long, oriented nanoribbons of graphene that are semiconducting, whereas unpatterned continuous graphene is semimetallic. This bottom-up growth overcomes long-standing challenges that have limited top-down ribbon fabrication (e.g., inadequate resolution and disordered edges) and yields ribbons with long segments of smooth armchair edges. The charge transport characteristics of sub-10 nm ribbons synthesized by this technique (which are expected to have band gaps sufficiently large for semiconductor electronics applications) have not yet been characterized. Here, we show that sub-10 nm nanoribbons grown on Ge(001) can simultaneously achieve a high on/off conductance ratio of 2 × 104 and a high on-state conductance of 5 µS in field-effect transistors, favorably comparing to or exceeding the performance of nanoribbons fabricated by other methods. These promising results demonstrate that the direct synthesis of nanoribbons on Ge(001) could provide a scalable pathway toward the practical realization of high-performance semiconducting graphene electronics, provided that the width uniformity and positioning of the nanoribbons are improved.

18.
ACS Appl Mater Interfaces ; 9(20): 17629-17636, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28474879

RESUMO

The oxidation of Ge covered with graphene that is either grown on or transferred to the surface is investigated by X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy. Graphene properly grown by chemical vapor deposition on Ge(100), (111), or (110) effectively inhibits room-temperature oxidation of the surface. When graphene is transferred to the Ge surface, oxidation is reduced relative to that on uncovered Ge but has the same power law dependence. We conclude that access to the graphene/Ge interface must occur via defects in the graphene. The excellent passivation provided by graphene grown on Ge should enhance applications of Ge in the electronic-device industry.

20.
ACS Nano ; 10(7): 7039-46, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27373305

RESUMO

The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa