RESUMO
Reinforcement efficiency of different types of carbon nanotubes (CNT) have been compared in polyacrylonitrile (PAN) films at nanotube loadings of 5, 10, and 20 wt %. The films are characterized for mechanical, dynamic-mechanical, and thermomechanical properties, electrical conductivity, as well as structural analysis. PAN/CNT composite films exhibit electrical conductivities up to 5500 S/m. Based on X-ray diffraction, PAN crystallinity was shown to increase with the presence of CNT. PAN-CNT interactions in the various composites were compared using conventional activation energy analysis. The strongest physical interaction between PAN and CNT was found in samples containing single-wall carbon nanotubes (SWNT). CNT surface area was also measured using nitrogen gas adsorption and correlated with PAN-CNT composite film mechanical properties, in an effort to better understand PAN-CNT interactions for different CNT morphologies. Solvent behavior of various composite films has also been investigated. The presence of CNT was found to improve PAN solvent resistance.