Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11925-11931, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088819

RESUMO

As a topological Dirac semimetal with controllable spin-orbit coupling and conductivity, PtSe2, a transition-metal dichalcogenide, is a promising material for several applications, from optoelectrics to sensors. However, its potential for spintronics applications has yet to be explored. In this work, we demonstrate that the PtSe2/Ni80Fe20 heterostructure can generate large damping-like current-induced spin-orbit torques (SOT), despite the absence of spin-splitting in bulk PtSe2. The efficiency of charge-to-spin conversion is found to be -0.1 ± 0.02 nm-1 in PtSe2/Ni80Fe20, which is 3 times that of the control sample, Ni80Fe20/Pt. Our band structure calculations show that the SOT due to PtSe2 arises from an unexpectedly large spin splitting in the interfacial region of PtSe2 introduced by the proximity magnetic field of the Ni80Fe20 layer. Our results open up the possibilities of using large-area PtSe2 for energy-efficient nanoscale devices by utilizing proximity-induced SOT.

2.
Nanotechnology ; 33(30)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439737

RESUMO

Integration of nanolayered metal chalcogenides with wide-bandgap semiconductors forming pn heterojunction leads to the way of high-performance photodetection. This work demonstrates the fabrication of a few nanometer thick Molybdenum diselenide (MoSe2)/Mg-doped Gallium Nitride (p-GaN) heterostructure for light detection purposes. The device exhibits low noise broadband spectral response from ultraviolet to near-infrared range (300-950 nm). The band-alignment and the charge transfer at the MoSe2/p-GaN interface promote self-powered photodetection with high photocurrent to dark current ratio of 2000 and 1000 at 365 nm and 640 nm, respectively. A high responsivity of 130 A W-1, detectivity of 4.8 × 1010Jones, and low noise equivalent power of 18 fW/Hz1/2at 365 nm is achieved at an applied bias of 1 V. Moreover, the transient measurements reveal a fast rise/fall time of 407/710µsec for the fabricated device. These outcomes exemplify the viability of MoSe2/p-GaN heterostructure for high-speed and low-noise broadband photodetector applications.

3.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33845466

RESUMO

A CMOS-compatible infrared (IR; 1200-1700 nm) detector based on Ge quantum dots (QDs) decorated on a single Si-nanowire channel on a silicon-on-insulator (SOI) platform with a superior detectivity at room temperature is presented. The spectral response of a single nanowire device measured in a back-gated field-effect transistor geometry displays a very high value of peak detectivity ∼9.33 × 1011Jones at ∼1500 nm with a relatively low dark current (∼20 pA), which is attributed to the fully depleted Si nanowire channel on SOI substrates. The noise power spectrum of the devices exhibits a1/fγ,with the exponent,γshowing two different values of 0.9 and 1.8 owing to mobility fluctuations and generation-recombination of carriers, respectively. Ge QD-decorated nanowire devices exhibit a novel polarization anisotropy with a remarkably high photoconductive gain of ∼104. The superior performance of a Ge QDs/Si nanowire phototransistor in IR wavelengths is potentially attractive to integrate electro-optical devices into Si for on-chip optical communications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa