Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Appl ; 16(6): 1119-1134, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37360023

RESUMO

Invasive species are a major threat to global biodiversity, yet also represent large-scale unplanned ecological and evolutionary experiments to address fundamental questions in nature. Here we analyzed both native and invasive populations of predatory northern pike (Esox lucius) to characterize landscape genetic variation, determine the most likely origins of introduced populations, and investigate a presumably postglacial population from Southeast Alaska of unclear provenance. Using a set of 4329 SNPs from 351 individual Alaskan northern pike representing the most widespread geographic sampling to date, our results confirm low levels of genetic diversity in native populations (average 𝝅 of 3.18 × 10-4) and even less in invasive populations (average 𝝅 of 2.68 × 10-4) consistent with bottleneck effects. Our analyses indicate that invasive northern pike likely came from multiple introductions from different native Alaskan populations and subsequently dispersed from original introduction sites. At the broadest scale, invasive populations appear to have been founded from two distinct regions of Alaska, indicative of two independent introduction events. Genetic admixture resulting from introductions from multiple source populations may have mitigated the negative effects associated with genetic bottlenecks in this species with naturally low levels of genetic diversity. Genomic signatures strongly suggest an excess of rare, population-specific alleles, pointing to a small number of founding individuals in both native and introduced populations consistent with a species' life history of limited dispersal and gene flow. Lastly, the results strongly suggest that a small isolated population of pike, located in Southeast Alaska, is native in origin rather than stemming from a contemporary introduction event. Although theory predicts that lack of genetic variation may limit colonization success of novel environments, we detected no evidence that a lack of standing variation limited the success of this genetically depauperate apex predator.

2.
PLoS One ; 16(7): e0254097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214119

RESUMO

The relentless role of invasive species in the extinction of native biota requires predictions of ecosystem vulnerability to inform proactive management strategies. The worldwide invasion and range expansion of predatory northern pike (Esox lucius) has been linked to the decline of native fishes and tools are needed to predict the vulnerability of habitats to invasion over broad geographic scales. To address this need, we coupled an intrinsic potential habitat modelling approach with a Bayesian network to evaluate the vulnerability of five culturally and economically vital species of Pacific salmon (Oncorhynchus spp.) to invasion by northern pike. This study was conducted along 22,875 stream km in the Southcentral region of Alaska, USA. Pink salmon (O. gorbuscha) were the most vulnerable species, with 15.2% (2,458 km) of their calculated extent identified as "highly" vulnerable, followed closely by chum salmon (O. keta, 14.8%; 2,557 km) and coho salmon (O. kisutch, 14.7%; 2,536 km). Moreover, all five Pacific salmon species were highly vulnerable in 1,001 stream km of shared habitat. This simple to implement, adaptable, and cost-effective framework will allow prioritizing habitats for early detection and monitoring of invading northern pike.


Assuntos
Esocidae/fisiologia , Espécies Introduzidas , Oncorhynchus/fisiologia , Alaska , Animais , Teorema de Bayes , Ecossistema , Geografia , Atividades Humanas , Modelos Teóricos , Rios , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa