Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3665, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351204

RESUMO

In the Late Cretaceous, northern and southern hemispheres evolved distinct dinosaurian faunas. Titanosaurians and abelisaurids dominated the Gondwanan continents; hadrosaurids, ceratopsians and tyrannosaurs dominated North America and Asia. Recently, a lambeosaurine hadrosaurid, Ajnabia odysseus, was reported from the late Maastrichtian phosphates of the Oulad Abdoun Basin Morocco, suggesting dispersal between Laurasia and Gondwana. Here we report new fossils from the phosphates of Morocco showing lambeosaurines achieved high diversity in the late Maastrichtian of North Africa. A skull represents a new dwarf lambeosaurine, Minqaria bata. Minqaria resembles Ajnabia odysseus in size, but differs in the ventrally positioned jugal facet and sinusoidal toothrow. The animal is small, ~ 3.5 m long, but the fused braincase shows it was mature. A humerus and a femur belong to larger hadrosaurids, ~ 6 m long, implying at least three species coexisted. The diversity of hadrosaurids in Europe and Africa suggests a dispersal-driven radiation, with lambeosaurines diversifying to take advantage of low ornithischian diversity. African lambeosaurines are small compared to North American and Asia hadrosaurids however, perhaps due to competition with titanosaurians. Hadrosaurids are unknown from eastern Africa, suggesting Moroccan hadrosaurids may be part of a distinct insular fauna, and represent an island radiation.


Assuntos
Dinossauros , Animais , Marrocos , Dinossauros/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , África do Norte , Fosfatos , Filogenia
2.
Anat Rec (Hoboken) ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180142

RESUMO

Paleophysiology is an emergent discipline. Organismic (integrative) approaches seem more appropriate than studies focusing on the variation of specific features because traits are tightly related in actual organisms. Here, we used such an organismic approach (including lifestyle, thermometabolism, and hunting behavior) to understand the paleobiology of the lower Jurassic (Toarcian) thalattosuchian metriorhynchoid Pelagosaurus typus. First, we show that the lifestyle (aquatic, amphibious, terrestrial) has an effect on the femoral compactness profiles in amniotes. The profile of Pelagosaurus indicates that it was amphibious, with a foraging activity in shallow marine environments (as suggested by the presence of salt glands) and thermoregulatory basking behavior in land (as suggested by the presence of osteoderms with highly developed ornamentation). As for the thermometabolism, we show that the mass-independent resting metabolic rate of Pelagosaurus is relatively high compared to the sample of extant ectothermic amniotes, but analysis of vascular canal diameter and inferences of red blood cell size refute the hypothesis suggesting incipient endothermy. Finally, the foraging behavior was inferred using two proxies. Pelagosaurus had a mass-independent maximum metabolic rate and an aerobic scope higher than those measured in the almost motionless Iguana iguana, similar to those measured in the sit-and-wait predator Crocodylus porosus but lower than those quantified in the active hunter Varanus gouldii. These results suggest that Pelagosaurus may have had a hunting behavior involving a slow sustained swimming or a patient waiting in shallow waters, and may have caught preys like gharials, using fast sideways sweeping motions of the head.

3.
Sci Adv ; 9(2): eabq2574, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630487

RESUMO

Before humans arrived, giant tortoises occurred on many western Indian Ocean islands. We combined ancient DNA, phylogenetic, ancestral range, and molecular clock analyses with radiocarbon and paleogeographic evidence to decipher their diversity and biogeography. Using a mitogenomic time tree, we propose that the ancestor of the extinct Mascarene tortoises spread from Africa in the Eocene to now-sunken islands northeast of Madagascar. From these islands, the Mascarenes were repeatedly colonized. Another out-of-Africa dispersal (latest Eocene/Oligocene) produced on Madagascar giant, large, and small tortoise species. Two giant and one large species disappeared c. 1000 to 600 years ago, the latter described here as new to science using nuclear and mitochondrial DNA. From Madagascar, the Granitic Seychelles were colonized (Early Pliocene) and from there, repeatedly Aldabra (Late Pleistocene). The Granitic Seychelles populations were eradicated and later reintroduced from Aldabra. Our results underline that integrating ancient DNA data into a multi-evidence framework substantially enhances the knowledge of the past diversity of island faunas.

4.
PLoS One ; 14(4): e0214055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939139

RESUMO

Abelisaurid theropods first appear in the fossil record in the early Jurassic and survived at least until the end of the Mesozoic. They were known to have dominated South America, India and Madagascar but were not so abundant in North America or Asia. Much less is known about their presence in Africa, although there has been several recent discoveries of abelisaurid material in Morocco. Here we add a partially preserved ilium to a growing body of evidence that suggests abelisaurs might also have dominated Africa.


Assuntos
Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Ílio/anatomia & histologia , Animais , Marrocos
5.
Sci Rep ; 7(1): 6802, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754956

RESUMO

The extinct group of the Pycnodontiformes is one of the most characteristic components of the Mesozoic and early Cenozoic fish faunas. These ray-finned fishes, which underwent an explosive morphological diversification during the Late Cretaceous, are generally regarded as typical shell-crushers. Here we report unusual cutting-type dentitions from the Paleogene of Morocco which are assigned to a new genus of highly specialized pycnodont fish. This peculiar taxon represents the last member of a new, previously undetected 40-million-year lineage (Serrasalmimidae fam. nov., including two other new genera and Polygyrodus White, 1927) ranging back to the early Late Cretaceous and leading to exclusively carnivorous predatory forms, unique and unexpected among pycnodonts. Our discovery indicates that latest Cretaceous-earliest Paleogene pycnodonts occupied more diverse trophic niches than previously thought, taking advantage of the apparition of new prey types in the changing marine ecosystems of this time interval. The evolutionary sequence of trophic specialization characterizing this new group of pycnodontiforms is strikingly similar to that observed within serrasalmid characiforms, from seed- and fruit-eating pacus to flesh-eating piranhas.


Assuntos
Caraciformes/classificação , Fósseis/anatomia & histologia , Filogenia , Animais , Caraciformes/anatomia & histologia , Ecossistema , Arcada Osseodentária/anatomia & histologia
6.
Elife ; 62017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28716184

RESUMO

The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (δ18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the δ18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism.


Assuntos
Evolução Biológica , Regulação da Temperatura Corporal , Fósseis , Mamíferos/fisiologia , Isótopos de Oxigênio/análise , Animais
7.
PLoS One ; 8(7): e63586, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874378

RESUMO

BACKGROUND: Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. PRINCIPAL FINDINGS: A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. CONCLUSION/SIGNIFICANCE: The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further supports the hypothesis that marine life was, at least locally, very diversified just prior to the Cretaceous/Palaeogene (K/Pg) biotic crisis.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Alimentar/fisiologia , Répteis/anatomia & histologia , Répteis/genética , Dente/anatomia & histologia , Tartarugas/anatomia & histologia , Tartarugas/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Fósseis , Marrocos , Filogenia , Crânio/anatomia & histologia , Sucção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa