Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 28(1): 204-209, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424298

RESUMO

The sequence of the DNA contains coding and non-coding regions. The role of the non-coding regions is not known and is hypothesized to maintain the structure of the DNA. This study aimed to investigate the structure of the non-coding sequences in honey bees utilizing bioinformatics. The non-coding sequences of the mtDNA of three honey bee species Apis dorosata, Apis florea, Apis cerana, and ten subspecies of Apis mellifera were investigated. Different techniques were utilized to explore the non-coding regions of these bees including sequence analysis, phylogenetic relationships, enzymatic digestion, and statistical tests. Variations in size and sequences of nucleotides were detected in the studied species and subspecies, but with the same nucleotide abundance (i.e. nucleotides A were more than T and nucleotides G were less than C). The phylogenetic tree based on the non-coding regions was partially similar to the known phylogenetic relationships between these bees. The enzymatic digestion using four restriction enzymes confirmed the results of the phylogenetic relationships. The statistical analysis based on numerical codes for nucleotides showed the absence of significant variations between the studied bees in their sequences in a similar way to results of neutrality tests. This study suggests that the non-coding regions have the same functional role in all the studied bees regardless of the number of nucleotides, and not just to maintain the structure of the DNA. This is approximately the first study to shade lights on the non-coding regions of the mtDNA of honey bees.

2.
Acta Trop ; 211: 105630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32673623

RESUMO

The landfill garbage includes organic and inorganic matter. The organic matter covers more than 50% of the total waste material. Due to improper management of landfill garbage, it causes serious risks to human health directly by the emission of toxic gasses. On the other hand, landfill sites are the natural habitat of several microbes and arthropods. The present discussion illustrates the impact of landfill garbage on insect ecology and human health. Here, we highlighted the arthropod density as well as diversity. Moreover, the population of insect vectors of various diseases, insect scavengers as well as pollinators has been pinpointed. It shows that landfill sites and adjacent areas are hotspots for a wide variety of arthropods. The proper management of landfill sites could reduce the population dynamics of various insect pests, and health risks could be decreased in low-and middle-income countries.


Assuntos
Ecossistema , Resíduos de Alimentos , Insetos/fisiologia , Instalações de Eliminação de Resíduos , Animais , Humanos , Controle de Insetos
3.
Saudi J Biol Sci ; 27(8): 2106-2110, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714035

RESUMO

American bolloworm, Helicoverpa armigera Hubner (Noctuidae: Lepidoptera) is considered as a major pest of various crops all over the world. It is mainly controlled by indiscriminate use of synthetic insecticides in the world due to which this pest developed resistance to most of the available insecticides. Therefore, in the current study, the efficacy of virulent strain of HaNPV (0.5 × 109 PIB/ml) alone and in combination with recommended doses of spintoram (20 g/100 L of water) and emamectin benzoate (200 ml/100 L of water) was tested in field. The combination of HaNPV with spintoram and emamectin benzoate 100% reduced the larval population as compared to emamectin benzoate and HaNPV alone. This suggested that the combination of spintoram and emamectin benzoate with HaNPV could be used in field to manage the infestation of H. armigera.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa