RESUMO
The reclamation of saline sodic soils requires sodium removal and the phytoremediation is one of the proven low-cost, low-risk technologies for reclaiming such soils. However, the role of Phragmites australis in reclaiming saline sodic soils has not been evaluated extensively. The comparative reclaiming role of P. australis and gypsum was evaluated in a column experiment on a sandy clay saline sodic soil with ECe 74.7 dS m-1, sodium adsorption ratio (SAR) 63.2, Na+ 361 g kg-1, and pH 8.46. The gypsum at 100% soil requirement, planting common reed (P. australis) alone, P. australis + gypsum at 50% soil gypsum requirements, and leaching (control without plant and gypsum) were four treatments applied. After 11 weeks of incubation, the results showed that all treatments including the control significantly reduced pH, EC, exchangeable Na+, and SAR from the initial values, the control being with least results. The gypsum and P. australis + gypsum were highly effective in salinity (ECe) reduction, while sodicity (SAR) and Na+ reductions were significantly higher in P. australis + gypsum treatment. The reclamation efficiency in terms of Na+ (83.4%) and SAR (86.8%) reduction was the highest in P. australis + gypsum. It is concluded that phytoremediation is an effective tool to reclaim saline sodic soil.
Assuntos
Recuperação e Remediação Ambiental , Poaceae , Sódio , Solo , Adsorção , Biodegradação Ambiental , Solução Salina , Salinidade , Sódio/análise , Solo/químicaRESUMO
The hydrophobicity of silica and composite aerogels has enabled them to acquire applications in a variety of fields. With remarkable structural, morphological, and physiochemical properties such as high porosity, surface area, chemical stability, and selectivity, these materials have gained much attention of researchers worldwide. Moreover, the hydrophobic conduct has enabled these aerogels to adsorb substances, i.e., organic pollutants, without collapsing the pore and network structure. Hence, considering such phenomenal properties and great adsorption potential, exploiting these materials for environmental and biomedical applications is trending. The present study explores the most recent advances in synthetic approaches and resulting properties of hydrophobic silica and composite aerogels. It presents the various precursors and co-precursors used for hydrophobization and gives a comparative analysis of drying methods. Moreover, as a major focus, the work presents the recent progress where these materials have shown promising results for various environmental remediation and biomedical applications. Finally, the bottlenecks in synthesis and applicability along with future prospects are given in conclusions.