Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circ Res ; 133(4): 313-329, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37449401

RESUMO

BACKGROUND: ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS: CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS: We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS: Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.


Assuntos
Fibrilação Atrial , Proteínas de Homeodomínio , Animais , Humanos , Camundongos , Fibrilação Atrial/genética , Cálcio/metabolismo , Dilatação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética
2.
Brain Res ; 1201: 88-92, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18295749

RESUMO

Recent work has shown that adenosine 5'-triphosphate (ATP) plays an important role in modulating the activity of parasympathetic cardiac vagal neurons that dominate the neural control of heart rate. This study examined the mechanisms by which activation of ATP receptors modulates excitatory neurotransmission to cardiac vagal neurons. Glutamatergic activity to cardiac vagal neurons was isolated and examined using whole-cell patch-clamp recordings in an in vitro brain slice preparation in rats. ATP (100 microM) evoked increases in the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cardiac vagal neurons which were blocked by the broad P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 100 microM). Application of the selective P2X receptor agonist, alpha, beta-methylene ATP (100 microM), also increased glutamatergic mEPSCs neurotransmission to cardiac vagal neurons indicating P2X receptors enhance glutamatergic release to cardiac vagal neurons. The evoked increase in glutamatergic mEPSC was unaltered by the voltage-gated calcium channel blocker cadmium, and was abolished by the selective P2X receptor antagonist 2',3'-O-(2,4,6-Trinitrophenyl) adenosine 5'-triphosphate, TNP-ATP (100 microM). This work demonstrates that the ATP evoked facilitation of excitatory neurotransmission to cardiac vagal neurons is dependent upon activation of P2X receptors on glutamatergic presynaptic terminals.


Assuntos
Trifosfato de Adenosina/fisiologia , Ácido Glutâmico/metabolismo , Bulbo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Nervo Vago/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gânglios Parassimpáticos/fisiologia , Coração/inervação , Bulbo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/metabolismo , Técnicas de Patch-Clamp , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X , Transmissão Sináptica/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos
3.
Brain Res ; 1224: 53-62, 2008 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-18590708

RESUMO

This study examined whether adenosine 5'-triphosphate (ATP) modulated inhibitory glycinergic and GABAergic neurotransmission to cardiac vagal neurons. Inhibitory activity to cardiac vagal neurons was isolated and examined using whole-cell patch-clamp recordings in an in vitro brain slice preparation in rats. ATP (100 microM) evoked increases in the frequency of glycinergic and GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in cardiac vagal neurons which were blocked by the broad P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (100 microM). Application of the P2Y agonists uridine triphosphate (15 microM) and adenosine 5'-0-(Z-thiodiphosphate) (60 microM) did not enhance inhibitory neurotransmission to cardiac vagal neurons however, application of the selective P2X; receptor agonist, alpha, beta-methylene ATP (100 microM), increased glycinergic and GABAergic mIPSC neurotransmission to cardiac vagal neurons. The increase in inhibitory neurotransmission evoked by alpha, beta-methylene ATP was abolished by the selective P2X receptor antagonist 2',3'-O-(2,4,6-Trinitrophenyl) adenosine 5'-triphosphate (100 microM) indicating P2X receptors enhance the release of inhibitory neurotransmitters to cardiac neurons. The voltage-gated calcium channel blocker cadmium chloride did not alter the evoked increase in inhibitory mIPSCs. This work demonstrates that P2X receptor activation enhances inhibitory neurotransmission to parasympathetic cardiac vagal neurons and demonstrates an important functional role for ATP mediated purinergic signaling to cardiac vagal neurons.


Assuntos
Coração/inervação , Bulbo/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Receptores Purinérgicos P2/metabolismo , Nervo Vago/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Glicina/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Bulbo/citologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Nervo Vago/citologia , Ácido gama-Aminobutírico/metabolismo
4.
Circ Genom Precis Med ; 11(5): e002037, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29748316

RESUMO

BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. METHODS: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. RESULTS: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (P<1.2×10-6), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 (P=5.9×10-11) and SCN5A (P=1.1×10-7) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. CONCLUSIONS: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.


Assuntos
Eletrocardiografia , Variação Genética , Adulto , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas/genética , Sequências Reguladoras de Ácido Nucleico/genética
5.
Circ Cardiovasc Genet ; 10(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28974514

RESUMO

BACKGROUND: Atrial fibrillation (AF) affects over 33 million individuals worldwide. Genome-wide association studies have identified at least 30 AF loci, but the mechanisms through which individual variants lead to altered disease risk have remained unclear for the majority of these loci. At the 1q24 locus, we hypothesized that the transcription factor PRRX1 could be a strong candidate gene as it is expressed in the pulmonary veins, a source of AF in many individuals. We sought to identify the molecular mechanism, whereby variation at 1q24 may lead to AF susceptibility. METHODS AND RESULTS: We sequenced a ≈158 kb region encompassing PRRX1 in 962 individuals with and without AF. We identified a broad region of association with AF at the 1q24 locus. Using in silico prediction and functional validation, we identified an enhancer that interacts with the promoter of PRRX1 in cells of cardiac lineage. Within this enhancer, we identified a single-nucleotide polymorphism, rs577676, which alters enhancer activity in a mouse atrial cell line and in embryonic zebrafish and differentially regulates PRRX1 expression in human left atria. We found that suppression of PRRX1 in human embryonic stem cell-derived cardiomyocytes and embryonic zebrafish resulted in shortening of the atrial action potential duration, a hallmark of AF. CONCLUSIONS: We have identified a functional genetic variant that alters PRRX1 expression, ultimately resulting in electrophysiological alterations in atrial myocytes that may promote AF.


Assuntos
Potenciais de Ação/genética , Fibrilação Atrial , Proteínas de Homeodomínio , Células-Tronco Embrionárias Humanas/metabolismo , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Animais Geneticamente Modificados , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Linhagem Celular , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/patologia , Humanos , Camundongos , Miócitos Cardíacos/patologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa