Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527963

RESUMO

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to scarcity of supporting evidence. In our study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite Reticulon-2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with Reticulon-2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN, and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.

2.
Circulation ; 147(10): 824-840, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36524479

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS: We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS: TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS: These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.


Assuntos
Síndrome de Brugada , Humanos , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Fenótipo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Sódio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
3.
Genet Med ; 25(2): 100332, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36520152

RESUMO

PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.


Assuntos
Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Transtornos do Neurodesenvolvimento/genética
4.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471564

RESUMO

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Assuntos
Apirase , Deficiência Intelectual , Paraplegia Espástica Hereditária , Substância Branca , Apirase/genética , Disartria , Humanos , Deficiência Intelectual/genética , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585108

RESUMO

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Assuntos
Alelos , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Proteínas do Citoesqueleto/genética , Deficiências do Desenvolvimento/genética , Lisencefalia/genética , Feminino , Humanos , Masculino , Linhagem
6.
Clin Genet ; 102(5): 444-450, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908151

RESUMO

HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.


Assuntos
Códon sem Sentido , Deficiência Intelectual , Prolil Hidroxilases/metabolismo , Aminoácidos , Domínio Catalítico , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Fenótipo , Síndrome
7.
Hum Mol Genet ; 28(11): 1919-1929, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715372

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatia Hipertrófica/mortalidade , Insuficiência Cardíaca/genética , Proteínas Repressoras/genética , Adulto , Animais , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Morte Súbita Cardíaca/patologia , Desmina/genética , Modelos Animais de Doenças , Feminino , Ligação Genética/genética , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Peixe-Zebra/genética
8.
Genet Med ; 23(4): 787-792, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33288880

RESUMO

PURPOSE: Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. METHODS: Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. RESULTS: Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood-onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains. CONCLUSIONS: Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cadeias Leves de Miosina/genética , Animais , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Consanguinidade , Morte Súbita Cardíaca/etiologia , Humanos , Linhagem , Peixe-Zebra/genética
9.
Brain ; 143(8): 2388-2397, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32705143

RESUMO

Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∼90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy.


Assuntos
Epilepsia/genética , Glutamato Descarboxilase/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Idade de Início , Alelos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação
10.
Physiol Genomics ; 52(9): 369-378, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687429

RESUMO

The increasing availability of genetic cohort data has led to many genome-wide association studies (GWAS) successfully identifying genetic associations with an ever-expanding list of phenotypic traits. Association, however, does not imply causation, and therefore methods have been developed to study the issue of causality. Under additional assumptions, Mendelian randomization (MR) studies have proved popular in identifying causal effects between two phenotypes, often using GWAS summary statistics. Given the widespread use of these methods, it is more important than ever to understand, and communicate, the causal assumptions upon which they are based, so that methods are transparent, and findings are clinically relevant. Causal graphs can be used to represent causal assumptions graphically and provide insights into the limitations associated with different analysis methods. Here we review GWAS and MR from a causal perspective, to build up intuition for causal diagrams in genetic problems. We also examine issues of confounding by ancestry and comment on approaches for dealing with such confounding, as well as discussing approaches for dealing with selection biases arising from study design.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Análise da Randomização Mendeliana/métodos , Neoplasias/genética , Causalidade , Estudos de Coortes , Variação Genética , Humanos , Modelos Estatísticos , Fenótipo
11.
Am J Hum Genet ; 100(3): 537-545, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190459

RESUMO

Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Monoéster Fosfórico Hidrolases/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Distroglicanas/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Estudo de Associação Genômica Ampla , Glicosilação , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Músculo Esquelético/metabolismo , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra/genética
12.
BMC Med Genet ; 21(1): 33, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059713

RESUMO

BACKGROUND: Tudor domain-containing proteins (TDRDs) play a critical role in piRNA biogenesis and germ cell development. piRNAs, small regulatory RNAs, act by silencing of transposons during germline development and it has recently been shown in animal model studies that defects in TDRD genes can lead to sterility in males. METHODS: Here we evaluate gene and protein expression levels of four key TDRDs (TDRD1, TDRD5, TDRD9 and TDRD12) in testicular biopsy samples obtained from men with obstructive azoospermia (OA, n = 29), as controls, and various types of non-obstructive azoospermia containing hypospermatogenesis (HP, 28), maturation arrest (MA, n = 30), and Sertoli cell-only syndrome (SCOS, n = 32) as cases. One-way ANOVA test followed by Dunnett's multiple comparison post-test was used to determine inter-group differences in TDRD gene expression among cases and controls. RESULTS: The results showed very low expression of TDRD genes in SCOS specimens. Also, the expression of TDRD1 and TDRD9 genes were lower in MA samples compared to OA samples. The expression of TDRD5 significantly reduced in SCOS, MA and HP specimens than the OA specimens. Indeed, TDRD12 exhibited a very low expression in HP specimens in comparison to OA specimens. All these results were confirmed by Western blot technique. CONCLUSION: TDRDs could be very important in male infertility, which should be express in certain stages of spermatogenesis.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Infertilidade Masculina/genética , Adulto , Animais , Azoospermia/patologia , Regulação da Expressão Gênica/genética , Humanos , Infertilidade Masculina/patologia , Masculino , RNA Interferente Pequeno/genética , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testículo/patologia
13.
J Cell Sci ; 130(10): 1772-1784, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28386022

RESUMO

The neuromuscular junction (NMJ) is the synapse between motoneurons and skeletal muscle, and is responsible for eliciting muscle contraction. Neurotransmission at synapses depends on the release of synaptic vesicles at sites called active zones (AZs). Various proteins of the extracellular matrix are crucial for NMJ development; however, little is known about the identity and functions of the receptors that mediate their effects. Using genetically modified mice, we find that integrin-α3 (encoded by Itga3), an adhesion receptor at the presynaptic membrane, is involved in the localisation of AZ components and efficient synaptic vesicle release. Integrin-α3 also regulates integrity of the synapse - mutant NMJs present with progressive structural changes and upregulated autophagy, features commonly observed during ageing and in models of neurodegeneration. Unexpectedly, we find instances of nerve terminal detachment from the muscle fibre; to our knowledge, this is the first report of a receptor that is required for the physical anchorage of pre- and postsynaptic elements at the NMJ. These results demonstrate multiple roles of integrin-α3 at the NMJ, and suggest that alterations in its function could underlie defects that occur in neurodegeneration or ageing.


Assuntos
Integrina alfa3/metabolismo , Junção Neuromuscular/metabolismo , Envelhecimento/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Desenvolvimento Embrionário , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Mutação/genética , Junção Neuromuscular/ultraestrutura , Transporte Proteico , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
14.
Hum Mol Genet ; 25(19): 4350-4368, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577874

RESUMO

The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10-14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10-4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10-8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10-9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10-7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.


Assuntos
Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Ventrículos do Coração/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Negro ou Afro-Americano/genética , Alelos , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/fisiopatologia , Eletrocardiografia , Feminino , Genótipo , Humanos , Masculino , Miocárdio/patologia , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
15.
Twin Res Hum Genet ; 20(6): 489-498, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29039294

RESUMO

Twin studies have found that ~50% of variance in electrocardiogram (ECG) traits can be explained by genetic factors. However, genetic variants identified through genome-wide association studies explain less than 10% of the total trait variability. Some have argued that the equal environment assumption for the classical twin model might be invalid, resulting in inflated narrow-sense heritability (h 2) estimates, thus explaining part of the 'missing h 2'. Genomic relatedness restricted maximum likelihood (GREML) estimation overcomes this issue. This method uses both family data and genome-wide coverage of common SNPs to determine the degree of relatedness between individuals to estimate both h 2 explained by common SNPs and total h 2. The aim of the current study is to characterize more reliably than previously possible ECG trait h 2 using GREML estimation, and to compare these outcomes to those of the classical twin model. We analyzed ECG traits (heart rate, PR interval, QRS duration, RV5+SV1, QTc interval, Sokolow-Lyon product, and Cornell product) in up to 3,133 twins from the TwinsUK cohort and derived h 2 estimates by both methods. GREML yielded h 2 estimates between 47% and 68%. Classical twin modeling provided similar h 2 estimates, except for the Cornell product, for which the best fit included no genetic factors. We found no evidence that the classical twin model leads to inflated h 2 estimates. Therefore, our study confirms the validity of the equal environment assumption for monozygotic and dizygotic twins and supports the robust basis for future studies exploring genetic variants responsible for the variance of ECG traits.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Idoso , Doença do Sistema de Condução Cardíaco/fisiopatologia , Eletrocardiografia , Feminino , Estudo de Associação Genômica Ampla , Frequência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos
16.
PLoS Med ; 13(6): e1001976, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27327646

RESUMO

BACKGROUND: C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal. METHODS AND FINDINGS: We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses. CONCLUSIONS: Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.


Assuntos
Proteína C-Reativa/genética , Estudo de Associação Genômica Ampla , Cardiopatias/genética , Doenças do Sistema Imunitário/genética , Análise da Randomização Mendeliana , Transtornos Mentais/genética , Doenças Metabólicas/genética , Proteína C-Reativa/metabolismo , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
17.
J Pediatr Gastroenterol Nutr ; 63(6): e169-e175, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27050058

RESUMO

OBJECTIVES: Coagulopathy and mesenteric thrombosis are common in premature neonates with necrotizing enterocolitis (NEC). This pilot study aimed to investigate the hypothesis that there are changes in the gene expression related to the coagulation and anticoagulation systems in NEC. METHODS: Consecutive neonates (n = 11) with NEC (Bell stages 2-3) were recruited. Two comparison groups, matched for birth weight and corrected gestational age, were selected based on the absence of inflammation and coagulopathy (healthy control, n = 10), or the presence of a confirmed blood infection (sepsis control, n = 12). A pathway-specific quantitative polymerase chain reaction array was used to determine the expression of 94 genes involved in human blood coagulation and anticoagulation cascade. RESULTS: Twelve genes of the coagulation and anticoagulation systems were significantly altered in the patients with NEC compared with healthy controls. In particular, neutrophil elastase, CD63, PROS1, HGF, and F12 were significantly upregulated (mean fold changes [FCs] +2.74, P < 0.05) with an overall procoagulant effect; MFGE8, factor II (thrombin) receptor-like 1 (F2RL1), FGL2, PLAT, PROCR, SERPIND1, and HNF4A were significantly downregulated (mean FCs -2.45, P < 0.05) with a reduction in fibrinolysis and endothelial regeneration. In the comparison between NEC and sepsis, we did observe a significant difference in expression of F2RL1 (FC -2.50, P = 0.01). CONCLUSIONS: We have identified potential biomarkers associated with coagulopathy and disease progression in NEC. In particular, the overall procoagulant status, at the transcriptional level, should be further investigated to unveil molecular mechanisms leading to intestinal necrosis, multiorgan failure, and death.


Assuntos
Coagulação Sanguínea/genética , Enterocolite Necrosante/genética , Expressão Gênica , Biomarcadores/sangue , Testes de Coagulação Sanguínea , Estudos de Casos e Controles , Progressão da Doença , Enterocolite Necrosante/sangue , Enterocolite Necrosante/complicações , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Lactente Extremamente Prematuro , Recém-Nascido , Masculino , Projetos Piloto , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Sepse/complicações , Sepse/genética
18.
Br J Clin Pharmacol ; 77(4): 618-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23834499

RESUMO

Ventricular arrhythmia induced by drugs (pro-arrythmia) is an uncommon event, whose occurrence is unpredictable but potentially fatal. The ability of a variety of medications to induce these arrhythmias is a significant problem facing the pharmaceutical industry. Genetic variants have been shown to play a role in adverse events and are also known to influence an individual's optimal drug dose. This review provides an overview of the current understanding of the role of genetic variants in modulating the risk of drug induced arrhythmias.


Assuntos
Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/genética , Variação Genética , Síndrome do QT Longo/genética , Arritmias Cardíacas/induzido quimicamente , Estudo de Associação Genômica Ampla , Humanos , Inativação Metabólica/genética , Síndrome do QT Longo/induzido quimicamente , Fatores de Risco , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/genética
19.
Genes (Basel) ; 14(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672924

RESUMO

Inherited cardiomyopathies are a prevalent cause of heart failure and sudden cardiac death. Both hypertrophic (HCM) and dilated cardiomyopathy (DCM) are genetically heterogeneous and typically present with an autosomal dominant mode of transmission. Whole exome sequencing and autozygosity mapping was carried out in eight un-related probands from consanguineous Middle Eastern families presenting with HCM/DCM followed by bioinformatic and co-segregation analysis to predict the potential pathogenicity of candidate variants. We identified homozygous missense variants in TNNI3K, DSP, and RBCK1 linked with a dilated phenotype, in NRAP linked with a mixed phenotype of dilated/hypertrophic, and in KLHL24 linked with a mixed phenotype of dilated/hypertrophic and non-compaction features. Co-segregation analysis in family members confirmed autosomal recessive inheritance presenting in early childhood/early adulthood. Our findings add to the mutational spectrum of recessive cardiomyopathies, supporting inclusion of KLHL24, NRAP and RBCK1 as disease-causing genes. We also provide evidence for novel (recessive) modes of inheritance of a well-established gene TNNI3K and expand our knowledge of the clinical heterogeneity of cardiomyopathies. A greater understanding of the genetic causes of recessive cardiomyopathies has major implications for diagnosis and screening, particularly in underrepresented populations, such as those of the Middle East.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Pré-Escolar , Humanos , Consanguinidade , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Mutação , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética
20.
Eur J Hum Genet ; 31(1): 97-104, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253531

RESUMO

Autosomal dominant variants in LDB3 (also known as ZASP), encoding the PDZ-LIM domain-binding factor, have been linked to a late onset phenotype of cardiomyopathy and myofibrillar myopathy in humans. However, despite knockout mice displaying a much more severe phenotype with premature death, bi-allelic variants in LDB3 have not yet been reported. Here we identify biallelic loss-of-function variants in five unrelated cardiomyopathy families by next-generation sequencing. In the first family, we identified compound heterozygous LOF variants in LDB3 in a fetus with bilateral talipes and mild left cardiac ventricular enlargement. Ultra-structural examination revealed highly irregular Z-disc formation, and RNA analysis demonstrated little/no expression of LDB3 protein with a functional C-terminal LIM domain in muscle tissue from the affected fetus. In a second family, a homozygous LDB3 nonsense variant was identified in a young girl with severe early-onset dilated cardiomyopathy with left ventricular non-compaction; the same homozygous nonsense variant was identified in a third unrelated female infant with dilated cardiomyopathy. We further identified homozygous LDB3 frameshift variants in two unrelated probands diagnosed with cardiomegaly and severely reduced left ventricular ejection fraction. Our findings demonstrate that recessive LDB3 variants can lead to an early-onset severe human phenotype of cardiomyopathy and myopathy, reminiscent of the knockout mouse phenotype, and supporting a loss of function mechanism.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Lactente , Camundongos , Animais , Humanos , Criança , Feminino , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Volume Sistólico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa