Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732936

RESUMO

Lung diseases are the third-leading cause of mortality in the world. Due to compromised lung function, respiratory difficulties, and physiological complications, lung disease brought on by toxic substances, pollution, infections, or smoking results in millions of deaths every year. Chest X-ray images pose a challenge for classification due to their visual similarity, leading to confusion among radiologists. To imitate those issues, we created an automated system with a large data hub that contains 17 datasets of chest X-ray images for a total of 71,096, and we aim to classify ten different disease classes. For combining various resources, our large datasets contain noise and annotations, class imbalances, data redundancy, etc. We conducted several image pre-processing techniques to eliminate noise and artifacts from images, such as resizing, de-annotation, CLAHE, and filtering. The elastic deformation augmentation technique also generates a balanced dataset. Then, we developed DeepChestGNN, a novel medical image classification model utilizing a deep convolutional neural network (DCNN) to extract 100 significant deep features indicative of various lung diseases. This model, incorporating Batch Normalization, MaxPooling, and Dropout layers, achieved a remarkable 99.74% accuracy in extensive trials. By combining graph neural networks (GNNs) with feedforward layers, the architecture is very flexible when it comes to working with graph data for accurate lung disease classification. This study highlights the significant impact of combining advanced research with clinical application potential in diagnosing lung diseases, providing an optimal framework for precise and efficient disease identification and classification.


Assuntos
Pneumopatias , Redes Neurais de Computação , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Algoritmos , Pulmão/diagnóstico por imagem , Pulmão/patologia
2.
Sensors (Basel) ; 20(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316356

RESUMO

Traffic control is one of the most challenging issues in metropolitan cities with growing populations and increased travel demands. Poor traffic control can result in traffic congestion and air pollution that can lead to health issues such as respiratory problems, asthma, allergies, anxiety, and stress. The traffic congestion can also result in travel delays and potential obstruction of emergency services. One of the most well-known traffic control methods is to restrict and control the access of private vehicles in predetermined regions of the city. The aim is to control the traffic load in order to maximize the citizen satisfaction given limited resources. The selection of restricted traffic regions remains a challenge because a large restricted area can reduce traffic load but with reduced citizen satisfaction as their mobility will be limited. On the other hand, a small restricted area may improve citizen satisfaction but with a reduced impact on traffic congestion or air pollution. The optimization of the restricted zone is a dynamic multi-regression problem that may require an intelligent trade-off. This paper proposes Optimal Restricted Driving Zone (ORDZ) using the Genetic Algorithm to select appropriate restricted traffic zones that can optimally control the traffic congestion and air pollution that will result in improved citizen satisfaction. ORDZ uses an augmented genetic algorithm and determinant theory to randomly generate different foursquare zones. This fitness function considers a trade-off between traffic load and citizen satisfaction. Our simulation studies show that ORDZ outperforms the current well-known methods in terms of a combined metric that considers the least traffic load and the most enhanced citizen satisfaction with over 30.6% improvements to some of the comparable methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa