Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548327

RESUMO

Upon microbial infection, host immune cells recognize bacterial cell envelope components through cognate receptors. Although bacterial cell envelope components function as innate immune molecules, the role of the physical state of the bacterial cell envelope (i.e., particulate versus soluble) in host immune activation has not been clearly defined. Here, using two different forms of the staphylococcal cell envelope of Staphylococcus aureus RN4220 and USA300 LAC strains, we provide biochemical and immunological evidence that the particulate state is required for the effective activation of host innate immune responses. In a murine model of peritoneal infection, the particulate form of the staphylococcal cell envelope (PCE) induced the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and CC chemokine ligand 2 (CCL2), the chemotactic cytokines for neutrophils and monocytes, respectively, resulting in a strong influx of the phagocytes into the peritoneal cavity. In contrast, compared with PCE, the soluble form of cell envelope (SCE), which was derived from PCE by treatment with cell wall-hydrolyzing enzymes, showed minimal activity. PCE also induced the secretion of calprotectin (myeloid-related protein 8/14 [MRP8/14] complex), a phagocyte-derived antimicrobial protein, into the peritoneal cavity at a much higher level than did SCE. The injected PCE particles were phagocytosed by the infiltrated neutrophils and monocytes and then delivered to mediastinal draining lymph nodes. More importantly, intraperitoneally (i.p.) injected PCE efficiently protected mice from S. aureus infection, which was abolished by the depletion of either monocytes/macrophages or neutrophils. This study demonstrated that the physical state of bacterial cells is a critical factor for efficient host immune activation and the protection of hosts from staphylococcal infections.


Assuntos
Parede Celular/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Feminino , Imunidade Inata/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/imunologia , Infecções Estafilocócicas/microbiologia
2.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341680

RESUMO

Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut.IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/crescimento & desenvolvimento , Burkholderia/metabolismo , Regulação Bacteriana da Expressão Gênica , Heterópteros/microbiologia , Simbiose , Animais , Proteínas de Bactérias/genética , Burkholderia/genética , Burkholderia/isolamento & purificação , Sistema Digestório/microbiologia , Feminino , Heterópteros/fisiologia , Masculino
3.
Dev Comp Immunol ; 78: 83-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919360

RESUMO

Recently, we have reported the structural determination of antimicrobial peptides (AMPs), such as riptocin, rip-defensin, and rip-thanatin, from Riptortus pedestris. However, the biological roles of AMPs in the host midgut remain elusive. Here, we compared the expression levels of AMP genes in apo-symbiotic insects with those of symbiotic insects. Interestingly, the expression level of rip-thanatin was only significantly increased in the posterior midgut region of symbiotic insects. To further determine the role of rip-thanatin, we checked antimicrobial activity in vitro. Rip-thanatin showed high antimicrobial activity and had the same structural characteristics as other reported thanatins. To find the novel function of rip-thanatin, rip-thanatin was silenced by RNA interference, and the population of gut symbionts was measured. When rip-thanatin was silenced, the symbionts' titer was increased upon bacterial infection. These results suggest that rip-thanatin functions not only as an antimicrobial peptide but also in controlling the symbionts' titer in the host midgut.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Burkholderia/imunologia , Burkholderia/fisiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Hemípteros/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Células Cultivadas , Imunidade Inata , RNA Interferente Pequeno/genética , Simbiose
4.
Dev Comp Immunol ; 81: 116-126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29174605

RESUMO

The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses.


Assuntos
Heterópteros/imunologia , Inseticidas/metabolismo , Metaloproteases/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Exopeptidases/genética , Engenharia Genética , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Celular , Imunidade Humoral , Terapia de Imunossupressão , Metaloproteases/genética , Mutação/genética , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética
5.
Dev Comp Immunol ; 69: 12-22, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27932027

RESUMO

Recent studies have suggested that gut symbionts modulate insect development and reproduction. However, the mechanisms by which gut symbionts modulate host physiologies and the molecules involved in these changes are unclear. To address these questions, we prepared three different groups of the insect Riptortus pedestris: Burkholderia gut symbiont-colonized (Sym) insects, Burkholderia-non-colonized (Apo) insects, and Burkholderia-depleted (SymBurk-) insects, which were fed tetracycline. When the hemolymph proteins of three insects were analyzed by SDS-PAGE, the hexamerin-α, hexamerin-ß and vitellogenin-1 proteins of Sym-adults were highly expressed compared to those of Apo- and SymBurk--insects. To investigate the expression patterns of these three genes during insect development, we measured the transcriptional levels of these genes. The hexamerin-ß gene was specifically expressed at all nymphal stages, and its expression was detected 4-5 days earlier in Sym-insect nymphs than that in Apo- and SymBurk--insects. However, the hexamerin-α and vitellogenin-1 genes were only expressed in adult females, and they were also detected 6-7 days earlier and were 2-fold higher in Sym-adult females than those in the other insects. Depletion of hexamerin-ß by RNA interference in 2nd instar Sym-nymphs delayed adult emergence, whereas hexamerin-α and vitellogenin-1 RNA interference in 5th instar nymphs caused loss of color of the eggs of Sym-insects. These results demonstrate that the Burkholderia gut symbiont modulates host development and egg production by regulating production of these three hemolymph storage proteins.


Assuntos
Burkholderia/fisiologia , Fertilidade , Microbioma Gastrointestinal/imunologia , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Vitelogeninas/metabolismo , Animais , Ovos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Estágios do Ciclo de Vida , RNA Interferente Pequeno/genética , Reprodução , Simbiose , Tetraciclina/administração & dosagem , Vitelogeninas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa