Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 296: 100040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33162394

RESUMO

The Hippo pathway controls organ size and tissue homeostasis through the regulation of cell proliferation and apoptosis. However, the exact molecular mechanisms underpinning Hippo pathway regulation are not fully understood. Here, we identify a new component of the Hippo pathway: coronin 7 (CORO7), a coronin protein family member that is involved in organization of the actin cytoskeleton. pod1, the Drosophila ortholog of CORO7, genetically interacts with key Hippo pathway genes in Drosophila. In mammalian cells, CORO7 is required for the activation of the Hippo pathway in response to cell-cell contact, serum deprivation, and cytoskeleton damage. CORO7 forms a complex with the core components of the pathway and functions as a scaffold for the Hippo core kinase complex. Collectively, these results demonstrate that CORO7 is a key scaffold controlling the Hippo pathway via modulating protein-protein interactions.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Drosophila , Células HEK293 , Humanos , Transdução de Sinais/genética
2.
FASEB J ; 33(9): 9742-9751, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120803

RESUMO

Mitophagy has been implicated in mitochondrial quality control and in various human diseases. However, the study of in vivo mitophagy remains limited. We previously explored in vivo mitophagy using a transgenic mouse expressing the mitochondria-targeted fluorescent protein Keima (mt-Keima). Here, we generated mt-Keima Drosophila to extend our efforts to study mitophagy in vivo. A series of experiments confirmed that mitophagy can be faithfully and quantitatively measured in mt-Keima Drosophila. We also showed that alterations in mitophagy upon environmental and genetic perturbation can be measured in mt-Keima Drosophila. Analysis of different tissues revealed a variation in basal mitophagy levels in Drosophila tissues. In addition, we found a significant increase in mitophagy levels during Drosophila embryogenesis. Importantly, loss-of-function genetic analysis demonstrated that the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)-Parkin pathway is essential for the induction of mitophagy in vivo in response to hypoxic exposure and rotenone treatment. These studies showed that the mt-Keima Drosophila system is a useful tool for understanding the role and molecular mechanism of mitophagy in vivo. In addition, we demonstrated the essential role of the PINK1-Parkin pathway in mitophagy induction in response to mitochondrial dysfunction.-Kim, Y. Y., Um, J.-H., Yoon, J.-H., Kim, H., Lee, D.-Y., Lee, Y. J., Jee, H. J., Kim, Y. M., Jang, J. S., Jang, Y.-G., Chung, J., Park, H. T., Finkel, T., Koh, H., Yun, J. Assessment of mitophagy in mt-Keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitofagia/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genótipo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética
3.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38558995

RESUMO

The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of the neural crest can cause severe congenital malformations. PRC2 is required for induction of the neural crest, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.

4.
Mol Cells ; 43(8): 705-717, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32759469

RESUMO

While the growth factors like insulin initiate a signaling cascade to induce conformational changes in the mechanistic target of rapamycin complex 1 (mTORC1), amino acids cause the complex to localize to the site of activation, the lysosome. The precise mechanism of how mTORC1 moves in and out of the lysosome is yet to be elucidated in detail. Here we report that microtubules and the motor protein KIF11 are required for the proper dissociation of mTORC1 from the lysosome upon amino acid scarcity. When microtubules are disrupted or KIF11 is knocked down, we observe that mTORC1 localizes to the lysosome even in the amino acid-starved situation where it should be dispersed in the cytosol, causing an elevated mTORC1 activity. Moreover, in the mechanistic perspective, we discover that mTORC1 interacts with KIF11 on the motor domain of KIF11, enabling the complex to move out of the lysosome along microtubules. Our results suggest not only a novel way of the regulation regarding amino acid availability for mTORC1, but also a new role of KIF11 and microtubules in mTOR signaling.


Assuntos
Cinesinas/antagonistas & inibidores , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Cinesinas/metabolismo , Fatores de Transcrição/metabolismo
5.
Dev Cell ; 42(4): 363-375.e4, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28829944

RESUMO

Target of rapamycin complex 1 (TORC1) regulates cell growth in response to nutrients and growth factors. Although TORC1 signaling has been thoroughly studied at the cellular level, the regulation of TORC1 in multicellular tissues and organs has remained elusive. Here we found that TORC1 is selectively activated in the second mitotic wave (SMW), the terminal synchronous cell division, of the developing Drosophila eye. We demonstrated that Hedgehog (Hh) signaling regulates TORC1 through E2F1 and the cyclin D/Cdk4 complex in the SMW, and this regulation is independent from insulin and amino acid signaling pathways. TORC1 is necessary for the proper G1/S transition of the cells, and the activation of TORC1 rescues the cell-cycle defect of Hh signaling-deficient cells in the SMW. Based on this evolutionarily conserved regulation of TORC1 by Hh signaling, we propose that Hh-dependent developmental signaling pathways spatially regulate TORC1 activity in multicellular organisms.


Assuntos
Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Animais , Olho Composto de Artrópodes/citologia , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Fator de Transcrição E2F1/genética , Proteínas Hedgehog/genética , Insulina/metabolismo , Mitose , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa