Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cryobiology ; 114: 104793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979827

RESUMO

One of the most common life-saving medical procedures is a red blood cell (RBC) transfusion. Unfortunately, RBCs for transfusion have a limited shelf life after donation due to detrimental storage effects on their morphological and biochemical properties. Inspired by nature, a biomimetics approach was developed to preserve RBCs for long-term storage using compounds found in animals with a natural propensity to survive in a frozen or desiccated state for decades. Trehalose was employed as a cryoprotective agent and added to the extracellular freezing solution of porcine RBCs. Slow cooling (-1 °C min-1) resulted in almost complete hemolysis (1 ± 1 % RBC recovery), and rapid cooling rates had to be used to achieve satisfactory cryopreservation outcomes. After rapid cooling, the highest percentage of RBC recovery was obtained by plunging in liquid nitrogen and thawing at 55 °C, using a cryopreservation solution containing 300 mM trehalose. Under these conditions, 88 ± 8 % of processed RBCs were recovered and retained hemoglobin (14 ± 2 % hemolysis). Hemoglobin's oxygen-binding properties of cryopreserved RBCs were not significantly different to unfrozen controls and was allosterically regulated by 2,3-bisphosphoglycerate. These data indicate the feasibility of using trehalose instead of glycerol as a cryoprotective compound for RBCs. In contrast to glycerol, trehalose-preserved RBCs can potentially be transfused without time-consuming washing steps, which significantly facilitates the usage of cryopreserved transfusible units in trauma situations when time is of the essence.


Assuntos
Criopreservação , Crioprotetores , Animais , Suínos , Crioprotetores/química , Criopreservação/métodos , Trealose/farmacologia , Trealose/metabolismo , Glicerol/farmacologia , Glicerol/metabolismo , Hemólise , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Oxigênio/metabolismo
2.
Cryobiology ; 98: 73-79, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359645

RESUMO

Despite recent advances in biostabilization, clinical blood supplies still experience shortages and storage limitations for red blood cells (RBCs) have not yet been sufficiently addressed. Storing RBCs in a frozen or dried state is an appealing solution to address storage limitations, but many promising cryoprotectants, including the non-reducing sugar trehalose, are impermeant to mammalian cell membranes and cannot be utilized effectively using currently available compound-loading methods. We found that transient pore formation induced by ultrasound and microbubbles (sonoporation) offers an effective means of loading trehalose into RBCs to facilitate long-term storage in a frozen or desiccated state. The protective potential of trehalose loading was demonstrated by freezing processed RBCs at -1 °C/min to -80 °C, then either storing the cells at -80 °C or lyophilizing them. RBCs were either thawed or rehydrated after 42 days of storage and evaluated for membrane integrity and esterase activity to estimate recovery and cell viability. The intracellular concentration of trehalose reached 40 mM after sonoporation and over 95% of treated RBCs were recovered after loading. Loading of trehalose was sufficient to maintain RBC morphology and esterase activity in most cells during freezing (>90% RBC recovery) and to a lower degree after lyophilization and rehydration (>20% recovery). Combining sonoporation with an integrated fluidics device allowed for rapid loading of up to 70 mM trehalose into RBCs. These results demonstrate the potential of sonoporation-mediated trehalose loading to increase recovery of viable RBCs, which could lead to effective methods for long-term stabilization of RBCs.


Assuntos
Preservação de Sangue , Criopreservação , Eritrócitos , Trealose , Criopreservação/métodos , Crioprotetores , Humanos
3.
Biomicrofluidics ; 14(2): 024114, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32341725

RESUMO

Preservation of erythrocytes in a desiccated state for storage at ambient temperature could simplify blood transfusions in austere environments, such as rural clinics, far-forward military operations, and during space travel. Currently, storage of erythrocytes is limited by a short shelf-life of 42 days at 4 °C, and long-term preservation requires a complex process that involves the addition and removal of glycerol from erythrocytes before and after storage at -80 °C, respectively. Natural compounds, such as trehalose, can protect cells in a desiccated state if they are present at sufficient levels inside the cell, but mammalian cell membranes lack transporters for this compound. To facilitate compound loading across the plasma membrane via ultrasound and microbubbles (sonoporation), a polydimethylsiloxane-based microfluidic device was developed. Delivery of fluorescein into erythrocytes was tested at various conditions to assess the effects of parameters such as ultrasound pressure, ultrasound pulse interval, microbubble dose, and flow rate. Changes in ultrasound pressure and mean flow rate caused statistically significant increases in fluorescein delivery of up to 73 ± 37% (p < 0.05) and 44 ± 33% (p < 0.01), respectively, compared to control groups, but no statistically significant differences were detected with changes in ultrasound pulse intervals. Following freeze-drying and rehydration, recovery of viable erythrocytes increased by up to 128 ± 32% after ultrasound-mediated loading of trehalose compared to control groups (p < 0.05). These results suggest that ultrasound-mediated molecular delivery in microfluidic channels may be a viable approach to process erythrocytes for long-term storage in a desiccated state at ambient temperatures.

4.
Biomicrofluidics ; 13(6): 064113, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768199

RESUMO

Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis (DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values. The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa