Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(23): 8685-90, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912195

RESUMO

Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.


Assuntos
Arabidopsis/embriologia , Forma Celular , Tamanho Celular , Sementes/citologia , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Giberelinas/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Microscopia Confocal , Modelos Biológicos , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Mecânico
2.
PLoS One ; 10(7): e0127905, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26154262

RESUMO

Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.


Assuntos
Modelos Biológicos , Petunia/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/efeitos da radiação , Simulação por Computador , Luz , Petunia/anatomia & histologia , Petunia/efeitos dos fármacos , Petunia/efeitos da radiação , Floema/efeitos dos fármacos , Floema/fisiologia , Floema/efeitos da radiação , Fosfatos/metabolismo , Fosfatos/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/efeitos da radiação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa