Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451483

RESUMO

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.


Assuntos
Mitocôndrias , Vitamina B 6 , Humanos , Células HEK293 , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Vitamina B 6/metabolismo , Fibroblastos , Células Cultivadas , Piridoxaminafosfato Oxidase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Aminoácidos/metabolismo
2.
Br J Haematol ; 200(2): 249-255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36177683

RESUMO

Erythrocytosis is associated with increased red blood cell mass and can be either congenital or acquired. Congenital secondary causes are rare and include germline variants increasing haemoglobin (Hb)-oxygen affinity (e.g., Hb or bisphosphoglycerate mutase (BPGM) variants) or affecting oxygen-sensing pathway proteins. Here, we describe five adults from three kindreds with erythrocytosis associated with heterozygosity for BPGM variants, including one novel. Functional analyses showed partial BPGM deficiency, reduced 2,3-bisphosphoglycerate levels and/or increased Hb-oxygen affinity. We also review currently known BPGM variants. This study contributes to raising awareness of BPGM variants, and in particular that heterozygosity for BPGM deficiency may already manifest clinically.


Assuntos
Anemia Hemolítica , Erros Inatos do Metabolismo , Policitemia , Adulto , Humanos , Bisfosfoglicerato Mutase/genética , Policitemia/congênito , Heterozigoto , Hemoglobinas , Oxigênio
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835444

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac death. Severity is highly variable, with incomplete penetrance among genotype-positive family members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total), 36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their contribution to risk stratification.


Assuntos
Cardiomiopatia Hipertrófica , Efeito Fundador , Miosinas , Humanos , Biomarcadores , Cardiomiopatia Hipertrófica/genética , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Mutação , Fenótipo , Volume Sistólico , Função Ventricular Esquerda , Miosinas/genética , Heterozigoto , Masculino
4.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422819

RESUMO

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do Exoma
5.
J Inherit Metab Dis ; 45(2): 353-365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34671987

RESUMO

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Organoides , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Humanos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas , Organoides/metabolismo
6.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239721

RESUMO

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Assuntos
Glutaminase/genética , Glutaminase/fisiologia , Adolescente , Animais , Encéfalo/metabolismo , Catarata/genética , Pré-Escolar , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Feminino , Fibroblastos , Mutação com Ganho de Função/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
7.
Br J Haematol ; 193(6): 1185-1193, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33997957

RESUMO

The diagnostic evaluation of Diamond Blackfan Anaemia (DBA), an inherited bone marrow failure syndrome characterised by erythroid hypoplasia, is challenging because of a broad phenotypic variability and the lack of functional screening tests. In this study, we explored the potential of untargeted metabolomics to diagnose DBA. In dried blood spot samples from 18 DBA patients and 40 healthy controls, a total of 1752 unique metabolite features were identified. This metabolic fingerprint was incorporated into a machine-learning algorithm, and a binary classification model was constructed using a training set. The model showed high performance characteristics (average accuracy 91·9%), and correct prediction of class was observed for all controls (n = 12) and all but one patient (n = 4/5) from the validation or 'test' set (accuracy 94%). Importantly, in patients with congenital dyserythropoietic anaemia (CDA) - an erythroid disorder with overlapping features - we observed a distinct metabolic profile, indicating the disease specificity of the DBA fingerprint and underlining its diagnostic potential. Furthermore, when exploring phenotypic heterogeneity, DBA treatment subgroups yielded discrete differences in metabolic profiles, which could hold future potential in understanding therapy responses. Our data demonstrate that untargeted metabolomics in dried blood spots is a promising new diagnostic tool for DBA.


Assuntos
Anemia de Diamond-Blackfan , Teste em Amostras de Sangue Seco , Metabolômica , Adolescente , Anemia de Diamond-Blackfan/sangue , Anemia de Diamond-Blackfan/diagnóstico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos Testes
8.
Genet Med ; 23(3): 524-533, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188300

RESUMO

PURPOSE: Dioxygenases are oxidoreductase enzymes with roles in metabolic pathways necessary for aerobic life. 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate dioxygenase (HPD), an iron-dependent dioxygenase involved in tyrosine catabolism. The function and association of HPDL with human diseases remain unknown. METHODS: We applied exome sequencing in a cohort of over 10,000 individuals with neurodevelopmental diseases. Effects of HPDL loss were investigated in vitro and in vivo, and through mass spectrometry analysis. Evolutionary analysis was performed to investigate the potential functional separation of HPDL from HPD. RESULTS: We identified biallelic variants in HPDL in eight families displaying recessive inheritance. Knockout mice closely phenocopied humans and showed evidence of apoptosis in multiple cellular lineages within the cerebral cortex. HPDL is a single-exonic gene that likely arose from a retrotransposition event at the base of the tetrapod lineage, and unlike HPD, HPDL is mitochondria-localized. Metabolic profiling of HPDL mutant cells and mice showed no evidence of altered tyrosine metabolites, but rather notable accumulations in other metabolic pathways. CONCLUSION: The mitochondrial localization, along with its disrupted metabolic profile, suggests HPDL loss in humans links to a unique neurometabolic mitochondrial infantile neurodegenerative condition.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , 4-Hidroxifenilpiruvato Dioxigenase/genética , Animais , Éxons , Humanos , Camundongos , Camundongos Knockout , Fenótipo
9.
Haematologica ; 106(10): 2720-2725, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054133

RESUMO

The diagnostic evaluation and clinical characterization of rare hereditary anemia (RHA) is to date still challenging. In particular, there is little knowledge on the broad metabolic impact of many of the molecular defects underlying RHA. In this study we explored the potential of untargeted metabolomics to diagnose a relatively common type of RHA: Pyruvate Kinase Deficiency (PKD). In total, 1903 unique metabolite features were identified in dried blood spot samples from 16 PKD patients and 32 healthy controls. A metabolic fingerprint was identified using a machine learning algorithm, and subsequently a binary classification model was designed. The model showed high performance characteristics (AUC 0.990, 95%CI 0.981-0.999) and an accurate class assignment was achieved for all newly added control (13) and patient samples (6), with the exception of one patient (accuracy 94%). Important metabolites in the metabolic fingerprint included glycolytic intermediates, polyamines and several acyl carnitines. In general, the application of untargeted metabolomics in dried blood spots is a novel functional tool that holds promise for diagnostic stratification and studies on disease pathophysiology in RHA.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Erros Inatos do Metabolismo dos Piruvatos , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Teste em Amostras de Sangue Seco , Humanos , Metabolômica , Piruvato Quinase/deficiência , Erros Inatos do Metabolismo dos Piruvatos/diagnóstico
10.
J Inherit Metab Dis ; 44(4): 792-808, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33990986

RESUMO

Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.


Assuntos
Aspartato Aminotransferases/deficiência , Ácido Aspártico/metabolismo , Malato Desidrogenase/deficiência , Malatos/metabolismo , Erros Inatos do Metabolismo/patologia , Mitocôndrias/patologia , Animais , Aspartato Aminotransferases/genética , Respiração Celular , Humanos , Lactente , Malato Desidrogenase/genética , Erros Inatos do Metabolismo/etiologia , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Espasmos Infantis/etiologia
11.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808189

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is a rapidly growing global health problem with an estimated 12.6 million cases globally in 2017 and a 112% increase of deaths since 1990 due to aging and population growth. CAVD may develop into aortic stenosis (AS) by progressive narrowing of the aortic valve. AS is underdiagnosed, and if treatment by aortic valve replacement (AVR) is delayed, this leads to poor recovery of cardiac function, absence of symptomatic improvement and marked increase of mortality. Considering the current limitations to define the stage of AS-induced cardiac remodeling, there is need for a novel method to aid in the diagnosis of AS and timing of intervention, which may be found in metabolomics profiling of patients. METHODS: Serum samples of nine healthy controls and 10 AS patients before and after AVR were analyzed by untargeted mass spectrometry. Multivariate modeling was performed to determine a metabolic profile of 30 serum metabolites which distinguishes AS patients from controls. Human cardiac microvascular endothelial cells (CMECs) were incubated with serum of the AS patients and then stained for ICAM-1 with Western Blot to analyze the effect of AS patient serum on endothelial cell activation. RESULTS: The top 30 metabolic profile strongly distinguishes AS patients from healthy controls and includes 17 metabolites related to nitric oxide metabolism and 12 metabolites related to inflammation, in line with the known pathomechanism for calcific aortic valve disease. Nine metabolites correlate strongly with left ventricular mass, of which three show reversal back to control values after AVR. Western blot analysis of CMECs incubated with AS patient sera shows a significant reduction (14%) in ICAM-1 in AS samples taken after AVR compared to AS patient sera before AVR. CONCLUSION: Our study defined a top 30 metabolic profile with biological and clinical relevance, which may be used as blood biomarker to identify AS patients in need of cardiac surgery. Future studies are warranted in patients with mild-to-moderate AS to determine if these metabolites reflect disease severity and can be used to identify AS patients in need of cardiac surgery.


Assuntos
Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/cirurgia , Sangue/metabolismo , Óxido Nítrico/sangue , Idoso , Estenose da Valva Aórtica/diagnóstico por imagem , Biomarcadores/sangue , Estudos de Casos e Controles , Eicosanoides/sangue , Células Endoteliais , Ácidos Graxos/sangue , Feminino , Implante de Prótese de Valva Cardíaca , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Tomografia por Emissão de Pósitrons , Transcriptoma
12.
Am J Hum Genet ; 100(1): 151-159, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989324

RESUMO

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.


Assuntos
Encefalopatias/genética , Ciclo do Ácido Cítrico , Malato Desidrogenase/genética , Mutação , Idade de Início , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Ciclo do Ácido Cítrico/genética , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fumaratos/metabolismo , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Masculino , Metabolômica , Modelos Moleculares
13.
Metabolomics ; 16(9): 99, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915321

RESUMO

Direct infusion untargeted mass spectrometry-based metabolomics allows for rapid insight into a sample's metabolic activity. However, analysis is often complicated by the large array of detected m/z values and the difficulty to prioritize important m/z and simultaneously annotate their putative identities. To address this challenge, we developed MetaboShiny, a novel R/RShiny-based metabolomics package featuring data analysis, database- and formula-prediction-based annotation and visualization. To demonstrate this, we reproduce and further explore a MetaboLights metabolomics bioinformatics study on lung cancer patient urine samples. MetaboShiny enables rapid and rigorous analysis and interpretation of direct infusion untargeted mass spectrometry-based metabolomics data.


Assuntos
Biologia Computacional , Metabolômica/métodos , Software , Curadoria de Dados , Interpretação Estatística de Dados , Bases de Dados Factuais , Humanos , Neoplasias Pulmonares/metabolismo , Aprendizado de Máquina , Espectrometria de Massas em Tandem
14.
J Inherit Metab Dis ; 43(2): 200-215, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31603991

RESUMO

Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Glutamatos/metabolismo , Glutamina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Bases de Dados Factuais , Deficiências Nutricionais/etiologia , Glutamatos/deficiência , Glutamina/deficiência , Humanos
15.
J Inherit Metab Dis ; 43(4): 843-851, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31990370

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder, characterised by chronic diarrhoea, xanthomas, cataracts, and neurological deterioration. CTX is caused by CYP27A1 deficiency, which leads to abnormal cholesterol and bile acid metabolism. Urinary bile acid profiling (increased m/z 627: glucuronide-5ß-cholestane-pentol) serves as diagnostic screening for CTX. However, this led to a false positive CTX diagnosis in two patients, who had received total intravenous anaesthesia (TIVA) with propofol. METHODS: To determine the influence of propofol on bile acid profiling, 10 urinary samples and 2 blood samples were collected after TIVA with propofol Fresenius 7 to 10 mg/kg/h from 12 subjects undergoing scoliosis correction. Urinary bile acids were analysed using flow injection negative electrospray mass spectrometry. Propofol binding to recombinant CYP27A1, the effects of propofol on recombinant CYP27A1 activity, and CYP27A1 expression in liver organoids were investigated using spectral binding, enzyme activity assays, and qPCR, respectively. Accurate masses were determined with high-resolution mass spectrometry. RESULTS: Abnormal urinary profiles were identified in all subjects after TIVA, with a trend correlating propofol dose per kilogramme and m/z 627 peak intensity. Propofol only induced a weak CYP27A1 response in the spectral binding assay, minimally affected CYP27A1 activity and did not affect CYP27A1 expression. The accurate mass of m/z 627 induced by propofol differed >10 PPM from m/z 627 observed in CTX. CONCLUSIONS: TIVA with propofol invariably led to a urinary profile misleadingly suggestive of CTX, but not through CYP27A1 inhibition. To avoid further misdiagnoses, propofol administration should be considered when interpreting urinary bile acid profiles.


Assuntos
Anestésicos Intravenosos/farmacologia , Ácidos e Sais Biliares/metabolismo , Bile/efeitos dos fármacos , Propofol/farmacologia , Xantomatose Cerebrotendinosa/diagnóstico , Adolescente , Anestésicos Intravenosos/administração & dosagem , Bile/metabolismo , Criança , Pré-Escolar , Colestanotriol 26-Mono-Oxigenase/efeitos dos fármacos , Colestanotriol 26-Mono-Oxigenase/genética , Colesterol/metabolismo , Erros de Diagnóstico , Feminino , Humanos , Masculino , Espectrometria de Massas , Propofol/administração & dosagem , Estudos Prospectivos , Xantomatose Cerebrotendinosa/genética
16.
J Inherit Metab Dis ; 43(3): 424-437, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31828787

RESUMO

Evidence for effectiveness of newborn screening (NBS) for propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is scarce. Prior to implementation in the Netherlands, we aim to estimate the expected health gain of NBS for PA and MMA. In this national retrospective cohort study, the clinical course of 76/83 Dutch PA and MMA patients, diagnosed between January 1979 and July 2019, was evaluated. Five clinical outcome parameters were defined: adverse outcome of the first symptomatic phase, frequency of acute metabolic decompensations (AMD), cognitive function, mitochondrial complications, and treatment-related complications. Outcomes of patients identified by family testing were compared with the outcomes of their index siblings. An adverse outcome due to the first symptomatic phase was recorded in 46% of the clinically diagnosed patients. Outcome of the first symptomatic phase was similar in 5/9 sibling pairs and better in 4/9 pairs. Based on the day of diagnosis of the clinically diagnosed patients and sibling pair analysis, a preliminary estimated reduction of adverse outcome due to the first symptomatic phase from 46% to 36%-38% was calculated. Among the sibling pairs, AMD frequency, cognitive function, mitochondrial, and treatment-related complications were comparable. These results suggest that the health gain of NBS for PA and MMA in overall outcome may be limited, as only a modest decrease of adverse outcomes due to the first symptomatic phase is expected. With current clinical practice, no reduced AMD frequency, improved cognitive function, or reduced frequency of mitochondrial or treatment-related complications can be expected.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Doenças Mitocondriais/complicações , Acidemia Propiônica/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Cognição , Feminino , Humanos , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Ácido Metilmalônico , Doenças Mitocondriais/fisiopatologia , Triagem Neonatal , Países Baixos , Acidemia Propiônica/fisiopatologia , Acidemia Propiônica/terapia , Estudos Retrospectivos , Irmãos
17.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024143

RESUMO

Untargeted metabolomics may become a standard approach to address diagnostic requests, but, at present, data interpretation is very labor-intensive. To facilitate its implementation in metabolic diagnostic screening, we developed a method for automated data interpretation that preselects the most likely inborn errors of metabolism (IEM). The input parameters of the knowledge-based algorithm were (1) weight scores assigned to 268 unique metabolites for 119 different IEM based on literature and expert opinion, and (2) metabolite Z-scores and ranks based on direct-infusion high resolution mass spectrometry. The output was a ranked list of differential diagnoses (DD) per sample. The algorithm was first optimized using a training set of 110 dried blood spots (DBS) comprising 23 different IEM and 86 plasma samples comprising 21 different IEM. Further optimization was performed using a set of 96 DBS consisting of 53 different IEM. The diagnostic value was validated in a set of 115 plasma samples, which included 58 different IEM and resulted in the correct diagnosis being included in the DD of 72% of the samples, comprising 44 different IEM. The median length of the DD was 10 IEM, and the correct diagnosis ranked first in 37% of the samples. Here, we demonstrate the accuracy of the diagnostic algorithm in preselecting the most likely IEM, based on the untargeted metabolomics of a single sample. We show, as a proof of principle, that automated data interpretation has the potential to facilitate the implementation of untargeted metabolomics for metabolic diagnostic screening, and we provide suggestions for further optimization of the algorithm to improve diagnostic accuracy.


Assuntos
Algoritmos , Biomarcadores/sangue , Interpretação Estatística de Dados , Bases de Conhecimento , Programas de Rastreamento/métodos , Erros Inatos do Metabolismo/diagnóstico , Metaboloma , Biomarcadores/metabolismo , Estudos de Casos e Controles , Humanos , Erros Inatos do Metabolismo/metabolismo , Espectrometria de Massas em Tandem
18.
Hum Genet ; 138(11-12): 1247-1257, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31538237

RESUMO

The reversible oxidation of L-malate to oxaloacetate is catalyzed by NAD(H)-dependent malate dehydrogenase (MDH). MDH plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle. These metabolic processes are important in mitochondrial NADH supply for oxidative phosphorylation. Recently, bi-allelic mutations in mitochondrial MDH2 were identified in patients with global developmental delay, epilepsy and lactic acidosis. We now report two patients from an extended consanguineous family with a deleterious variant in the cytosolic isoenzyme of MDH (MDH1). The homozygous missense variant in the NAD+-binding domain of MDH1 led to severely diminished MDH protein expression. The patients presented with global developmental delay, epilepsy and progressive microcephaly. Both patients had normal concentrations of plasma amino acids, acylcarnitines, lactate, and urine organic acids. To identify the metabolic consequences of MDH1 deficiency, untargeted metabolomics was performed on dried blood spots (DBS) from the patients and in MDH1 knockout HEK293 cells that were generated by Crispr/Cas9. Increased levels of glutamate and glycerol-3-phosphate were found in DBS of both patients. In MDH1 KO HEK293 cells, increased levels of glycerol-3-phosphate were also observed, as well as increased levels of aspartate and decreased levels of fumarate. The consistent finding of increased concentrations of glycerol-3-phosphate may represent a compensatory mechanism to enhance cytosolic oxidation of NADH by the glycerol-P-shuttle. In conclusion, MDH1 deficiency is a new metabolic defect in the malate-aspartate shuttle characterized by a severe neurodevelopmental phenotype with elevated concentrations of glycerol-3-phosphate as a potential biomarker.


Assuntos
Ácido Aspártico/metabolismo , Encefalopatias/metabolismo , Encefalopatias/patologia , Malato Desidrogenase/deficiência , Malatos/metabolismo , Doenças Metabólicas/etiologia , Idade de Início , Encefalopatias/complicações , Pré-Escolar , Feminino , Humanos , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Metaboloma , Linhagem
19.
Mol Genet Metab ; 127(1): 51-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926434

RESUMO

BACKGROUND: For inborn errors of metabolism (IEM), metabolomics is performed for three main purposes: 1) development of next generation metabolic screening platforms, 2) identification of new biomarkers in predefined patient cohorts and 3) for identification of new IEM. To date, plasma, urine and dried blood spots are used. We anticipate that cerebrospinal fluid (CSF) holds additional - valuable - information, especially for IEM with neurological involvement. To expand metabolomics to CSF, we here tested whether direct-infusion high-resolution mass spectrometry (DI-HRMS) based non-quantitative metabolomics could correctly capture the biochemical profile of patients with an IEM in CSF. METHODS: Eleven patient samples, harboring eight different IEM, and thirty control samples were analyzed using DI-HRMS. First we assessed whether the biochemical profile of the control samples represented the expected profile in CSF. Next, each patient sample was assigned a 'most probable diagnosis' by an investigator blinded for the known diagnoses of the patients. RESULTS: the biochemical profile identified using DI-HRMS in CSF samples resembled the known profile, with - among others - the highest median intensities for mass peaks annotated with glucose, lactic acid, citric acid and glutamine. Subsequent analysis of patient CSF profiles resulted in correct 'most probable diagnoses' for all eleven patients, including non-ketotic hyperglycinaemia, propionic aciduria, purine nucleoside phosphorylase deficiency, argininosuccinic aciduria, tyrosinaemia type I, hyperphenylalaninemia and hypermethioninaemia. CONCLUSION: We here demonstrate that DI-HRMS based non-quantitative metabolomics accurately captures the biochemical profile of this set of patients in CSF, opening new ways for using metabolomics in CSF in the metabolic diagnostic laboratory.


Assuntos
Erros Inatos do Metabolismo/líquido cefalorraquidiano , Erros Inatos do Metabolismo/diagnóstico , Metabolômica/métodos , Biomarcadores/líquido cefalorraquidiano , Humanos , Espectrometria de Massas
20.
Mol Genet Metab ; 127(4): 368-372, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31311714

RESUMO

BACKGROUND: NGLY1-CDDG is a congenital disorder of deglycosylation caused by a defective peptide:N-glycanase (PNG). To date, all but one of the reported patients have been diagnosed through whole-exome or whole-genome sequencing, as no biochemical marker was available to identify this disease in patients. Recently, a potential urinary biomarker was reported, but the data presented suggest that this marker may be excreted intermittently. METHODS: In this study, we performed untargeted direct-infusion high-resolution mass spectrometry metabolomics in seven dried blood spots (DBS) from four recently diagnosed NGLY1-CDDG patients, to test for small-molecule biomarkers, in order to identify a potential diagnostic marker. Results were compared to 125 DBS of healthy controls and to 238 DBS of patients with other diseases. RESULTS: We identified aspartylglycosamine as the only significantly increased compound with a median Z-score of 4.8 (range: 3.8-8.5) in DBS of NGLY1-CDDG patients, compared to a median Z-score of -0.1 (range: -2.1-4.0) in DBS of healthy controls and patients with other diseases. DISCUSSION: The increase of aspartylglycosamine can be explained by lack of function of PNG. PNG catalyzes the cleavage of the proximal N-acetylglucosamine residue of an N-glycan from the asparagine residue of a protein, a step in the degradation of misfolded glycoproteins. PNG deficiency results in a single N-acetylglucosamine residue left attached to the asparagine residue which results in free aspartylglycosamine when the glycoprotein is degraded. Thus, we here identified aspartylglycosamine as the first potential small-molecule biomarker in DBS for NGLY1-CDDG, making a biochemical diagnosis for NGLY1-CDDG potentially feasible.


Assuntos
Acetilglucosamina/análogos & derivados , Defeitos Congênitos da Glicosilação/diagnóstico , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Acetilglucosamina/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Teste em Amostras de Sangue Seco , Feminino , Humanos , Lactente , Masculino , Espectrometria de Massas , Mutação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa