Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 101(3): 326-339, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844486

RESUMO

During pregnancy, cell-free DNA (cfDNA) in maternal blood encompasses a small percentage of cell-free fetal DNA (cffDNA), an easily accessible source for determination of fetal disease status in risk families through non-invasive procedures. In case of monogenic heritable disease, background maternal cfDNA prohibits direct observation of the maternally inherited allele. Non-invasive prenatal diagnostics (NIPD) of monogenic diseases therefore relies on parental haplotyping and statistical assessment of inherited alleles from cffDNA, techniques currently unavailable for routine clinical practice. Here, we present monogenic NIPD (MG-NIPD), which requires a blood sample from both parents, for targeted locus amplification (TLA)-based phasing of heterozygous variants selectively at a gene of interest. Capture probes-based targeted sequencing of cfDNA from the pregnant mother and a tailored statistical analysis enables predicting fetal gene inheritance. MG-NIPD was validated for 18 pregnancies, focusing on CFTR, CYP21A2, and HBB. In all cases we could predict the inherited alleles with >98% confidence, even at relatively early stages (8 weeks) of pregnancy. This prediction and the accuracy of parental haplotyping was confirmed by sequencing of fetal material obtained by parallel invasive procedures. MG-NIPD is a robust method that requires standard instrumentation and can be implemented in any clinic to provide families carrying a severe monogenic disease with a prenatal diagnostic test based on a simple blood draw.


Assuntos
Hiperplasia Suprarrenal Congênita/diagnóstico , Biomarcadores/sangue , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Esteroide 21-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/genética , Células Cultivadas , Fibrose Cística/sangue , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/sangue , DNA/sangue , DNA/genética , Feminino , Haplótipos , Humanos , Gravidez , Esteroide 21-Hidroxilase/sangue
2.
Hum Mutat ; 27(7): 654-66, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16683254

RESUMO

Rapid and reliable identification of deleterious changes in the breast cancer genes BRCA1 and BRCA2 has become one of the major issues in most DNA services laboratories. To rapidly detect all possible changes within the coding and splice site determining sequences of the breast cancer genes, we established a semiautomated denaturing gradient gel electrophoresis (DGGE) mutation scanning system. All exons of both genes are covered by the DGGE scan, comprising 120 amplicons. We use a semiautomated approach, amplifying all individual amplicons with the same PCR program, after which the amplicons are pooled. DGGE is performed using three slightly different gel conditions. Validation was performed using DNA samples with known sequence variants in 107 of the 120 amplicons; all variants were detected. This DGGE mutation scanning, in combination with a PCR test for two Dutch founder deletions in BRCA1 was then applied in 431 families in which 52 deleterious changes and 70 unclassified variants were found. Fifteen unclassified variants were not reported before. The system was easily adopted by five other laboratories, where in another 3,593 families both exons 11 were analyzed by the protein truncation test (PTT) and the remaining exons by DGGE. In total, a deleterious change (nonsense, frameshift, splice-site mutation, or large deletion) was found in 661 families (16.4%), 462 in BRCA1 (11.5%), 197 in BRCA2 (4.9%), and in two index cases a deleterious change in both BRCA1 and BRCA2 was identified. Eleven deleterious changes in BRCA1 and 36 in BRCA2 had not been reported before. In conclusion, this DGGE mutation screening method for BRCA1 and BRCA2 is proven to be highly sensitive and is easy to adopt, which makes screening of large numbers of patients feasible. The results of screening of BRCA1 and BRCA2 in more than 4,000 families present a valuable overview of mutations in the Dutch population.


Assuntos
Neoplasias da Mama/diagnóstico , Análise Mutacional de DNA/métodos , Eletroforese em Gel de Poliacrilamida , Genes BRCA1 , Genes BRCA2 , Testes Genéticos/métodos , Neoplasias Ovarianas/diagnóstico , Instituições de Assistência Ambulatorial , Feminino , Efeito Fundador , Humanos , Masculino , Países Baixos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa