Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792133

RESUMO

L-asparaginases are used in the treatment of acute lymphoblastic leukemia. The aim of this work was to compare the antiproliferative potential and proapoptotic properties of novel L-asparaginases from different structural classes, viz. EcAIII and KpAIII (class 2), as well as ReAIV and ReAV (class 3). The EcAII (class 1) enzyme served as a reference. The proapoptotic and antiproliferative effects were tested using four human leukemia cell models: MOLT-4, RAJI, THP-1, and HL-60. The antiproliferative assay with the MOLT-4 cell line indicated the inhibitory properties of all tested L-asparaginases. The results from the THP-1 cell models showed a similar antiproliferative effect in the presence of EcAII, EcAIII, and KpAIII. In the case of HL-60 cells, the inhibition of proliferation was observed in the presence of EcAII and KpAIII, whereas the proliferation of RAJI cells was inhibited only by EcAII. The results of the proapoptotic assays showed individual effects of the enzymes toward specific cell lines, suggesting a selective (time-dependent and dose-dependent) action of the tested L-asparaginases. We have, thus, demonstrated that novel L-asparaginases, with a lower substrate affinity than EcAII, also exhibit significant antileukemic properties in vitro, which makes them interesting new drug candidates for the treatment of hematological malignancies. For all enzymes, the kinetic parameters (Km and kcat) and thermal stability (Tm) were determined. Structural and catalytic properties of L-asparaginases from different classes are also summarized.


Assuntos
Antineoplásicos , Apoptose , Asparaginase , Proliferação de Células , Humanos , Asparaginase/farmacologia , Asparaginase/química , Asparaginase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Especificidade por Substrato , Células HL-60 , Leucemia/tratamento farmacológico , Leucemia/enzimologia
2.
Antimicrob Agents Chemother ; 67(2): e0109522, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36648230

RESUMO

OXA-48-producing Enterobacterales have now widely disseminated throughout the world. Several variants have now been reported, differing by just a few amino-acid substitutions or deletions, mostly in the region of the loop ß5-ß6. As OXA-48 hydrolyzes carbapenems but lacks significant expanded-spectrum cephalosporin (ESC) hydrolytic activity, ESCs were suggested as a therapeutic option. Here, we have characterized OXA-517, a natural variant of OXA-48- with an Arg214Lys substitution and a deletion of Ile215 and Glu216 in the ß5-ß6 loop, capable of hydrolyzing at the same time ESC and carbapenems. MICs values of E. coli expressing blaOXA-517 gene revealed reduced susceptibility to carbapenems (similarly to OXA-48) and resistance to ESCs. Steady-state kinetic parameters revealed high catalytic efficiencies for ESCs and carbapenems. The blaOXA-517 gene was located on a ca. 31-kb plasmid identical to the prototypical IncL blaOXA-48-carrying plasmid except for an IS1R-mediated deletion of 30.7-kb in the tra operon. The crystal structure of OXA-517, determined to 1.86 Å resolution, revealed an expanded active site compared to that of OXA-48, which allows for accommodation of the bulky ceftazidime substrate. Our work illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutation/deletion in the ß5-ß6 loop to extend its hydrolysis profile to encompass most ß-lactam substrates.


Assuntos
Carbapenêmicos , Cefalosporinas , Carbapenêmicos/farmacologia , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/química , Ceftazidima , Monobactamas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Nucleic Acids Res ; 48(2): 962-973, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799624

RESUMO

Stereochemical restraints are commonly used to aid the refinement of macromolecular structures obtained by experimental methods at lower resolution. The standard restraint library for nucleic acids has not been updated for over two decades and needs revision. In this paper, geometrical restraints for nucleic acids sugars are derived using information from high-resolution crystal structures in the Cambridge Structural Database. In contrast to the existing restraints, this work shows that different parts of the sugar moiety form groups of covalent geometry dependent on various chemical and conformational factors, such as the type of ribose or the attached nucleobase, and ring puckering or rotamers of the glycosidic (χ) or side-chain (γ) torsion angles. Moreover, the geometry of the glycosidic link and the endocyclic ribose bond angles are functionally dependent on χ and sugar pucker amplitude (τm), respectively. The proposed restraints have been positively validated against data from the Nucleic Acid Database, compared with an ultrahigh-resolution Z-DNA structure in the Protein Data Bank, and tested by re-refining hundreds of crystal structures in the Protein Data Bank. The conformation-dependent sugar restraints presented in this work are publicly available in REFMAC, PHENIX and SHELXL format through a dedicated RestraintLib web server with an API function.


Assuntos
Ácidos Nucleicos/química , Polinucleotídeos/química , Proteínas/química , Açúcares/química , Cristalografia por Raios X , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Modelos Moleculares , Estrutura Molecular , Ácidos Nucleicos/genética , Conformação Proteica , Proteínas/classificação , Software
4.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628610

RESUMO

Amyloid fibrils have been known for many years. Unfortunately, their fame stems from negative aspects related to amyloid diseases. Nevertheless, due to their properties, they can be used as interesting nanomaterials. Apart from their remarkable stability, amyloid fibrils may be regarded as a kind of a storage medium and as a source of active peptides. In many cases, their structure may guarantee a controlled and slow release of peptides in their active form; therefore, they can be used as a potential nanomaterial in drug delivery systems. In addition, amyloid fibrils display controllable stiffness, flexibility, and satisfactory mechanical strength. In addition, they can be modified and functionalized very easily. Understanding the structure and genesis of amyloid assemblies derived from a broad range of amyloidogenic proteins could help to better understand and use this unique material. One of the factors responsible for amyloid aggregation is the steric zipper. Here, we report the discovery of steric zipper-forming peptides in the sequence of the amyloidogenic protein, human cystatin C (HCC). The ability of short peptides derived from this fragment of HCC to form fibrillar structures with defined self-association characteristics and the factors influencing this aggregation are also presented in this paper.


Assuntos
Amiloide , Amiloidose , Amiloide/química , Proteínas Amiloidogênicas/química , Cistatina C/química , Humanos , Peptídeos/química
5.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361985

RESUMO

Phosphoglycerate mutase (PGAM) is a glycolytic enzyme converting 3-phosphoglycerate to 2-phosphoglycerate, which in mammalian cells is expressed in two isoforms: brain (PGAM1) and muscle (PGAM2). Recently, it was shown that besides its enzymatic function, PGAM2 can be imported to the cell nucleus where it co-localizes with the nucleoli. It was suggested that it functions there to stabilize the nucleolar structure, maintain mRNA expression, and assist in the assembly of new pre-ribosomal subunits. However, the precise mechanism by which the protein translocates to the nucleus is unknown. In this study, we present the first crystal structure of PGAM2, identify the residues involved in the nuclear localization of the protein and propose that PGAM contains a "quaternary nuclear localization sequence (NLS)", i.e., one that consists of residues from different protein chains. Additionally, we identify potential interaction partners for PGAM2 in the nucleoli and demonstrate that 14-3-3ζ/δ is indeed an interaction partner of PGAM2 in the nucleus. We also present evidence that the insulin/IGF1-PI3K-Akt-mTOR signaling pathway is responsible for the nuclear localization of PGAM2.


Assuntos
Fosfatidilinositol 3-Quinases , Fosfoglicerato Mutase , Animais , Fosfoglicerato Mutase/genética , Transporte Ativo do Núcleo Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas 14-3-3/metabolismo , Músculos/metabolismo , Mamíferos/metabolismo
6.
Genome ; 64(7): 693-704, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33464999

RESUMO

Pathogenesis-related (PR) proteins play important roles in plant defense response. However, functional investigation of PR10 genes is still limited and their physiological roles have not been conclusively characterized in biological processes of conifer trees. Here, we identified multiple novel members in the western white pine (Pinus monticola) PmPR10 family by bioinformatic mining available transcriptomic data. Phylogenetic analysis of protein sequences revealed four PR10 and two PR10-like clusters with a high synteny across different species of five-needle pines. Of 10 PmPR10 genes, PmPR10-3.1 was selected and expressed in Escherichia coli. The purified recombinant protein exhibited inhibitory effects on spore hyphal growth of fungal pathogens Cronartium ribicola, Phoma exigua, and Phoma argillacea by in-vitro anti-fungal analysis. Genetic variation analysis detected a total of 21 single nucleotide polymorphisms (SNPs) within PmPR10-3.1 in a collection of P. monticola seed families. A nonsynonymous SNP (t178g) showed significant association with relative levels of quantitative disease resistance (QDR), explaining about 8.7% of phenotypic variation as the peak value across all SNPs. Our results provide valuable insight into the genetic architecture underlying P. monticola QDR and imply that PmPR10-3.1 may function as an important component in conifer basal immunity for non-specific resistance to a wide spectrum of pathogens.


Assuntos
Basidiomycota , Resistência à Doença , Pinus , Doenças das Plantas , Basidiomycota/patogenicidade , Resistência à Doença/genética , Humanos , Phoma/patogenicidade , Filogenia , Pinus/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
7.
Bioinformatics ; 35(3): 452-461, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016407

RESUMO

Motivation: The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods, but existing approaches are based on time-consuming iterative fitting. Results: Here we report a new machine learning algorithm called CheckMyBlob that identifies ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931 ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank, CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in some cases doubling the recognition rates, while requiring significantly less time. Our work shows that machine learning can improve the automation of structure modeling and significantly accelerate the drug screening process of macromolecule-ligand complexes. Availability and implementation: Code and data are available on GitHub at https://github.com/dabrze/CheckMyBlob. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Elétrons , Ligantes , Aprendizado de Máquina , Ligação Proteica , Algoritmos , Sítios de Ligação
8.
Biochem J ; 476(16): 2297-2319, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31371393

RESUMO

Inorganic pyrophosphatases (PPases, EC 3.6.1.1), which hydrolyze inorganic pyrophosphate to phosphate in the presence of divalent metal cations, play a key role in maintaining phosphorus homeostasis in cells. DNA coding inorganic pyrophosphatases from Arabidopsis thaliana (AtPPA1) and Medicago truncatula (MtPPA1) were cloned into a bacterial expression vector and the proteins were produced in Escherichia coli cells and crystallized. In terms of their subunit fold, AtPPA1 and MtPPA1 are reminiscent of other members of Family I soluble pyrophosphatases from bacteria and yeast. Like their bacterial orthologs, both plant PPases form hexamers, as confirmed in solution by multi-angle light scattering and size-exclusion chromatography. This is in contrast with the fungal counterparts, which are dimeric. Unexpectedly, the crystallized AtPPA1 and MtPPA1 proteins lack ∼30 amino acid residues at their N-termini, as independently confirmed by chemical sequencing. In vitro, self-cleavage of the recombinant proteins is observed after prolonged storage or during crystallization. The cleaved fragment corresponds to a putative signal peptide of mitochondrial targeting, with a predicted cleavage site at Val31-Ala32. Site-directed mutagenesis shows that mutations of the key active site Asp residues dramatically reduce the cleavage rate, which suggests a moonlighting proteolytic activity. Moreover, the discovery of autoproteolytic cleavage of a mitochondrial targeting peptide would change our perception of this signaling process.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Pirofosfatase Inorgânica/química , Medicago truncatula/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cristalografia por Raios X , Pirofosfatase Inorgânica/genética , Medicago truncatula/genética , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
BMC Biol ; 17(1): 13, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777051

RESUMO

Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein-protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Animais , Proteínas CLOCK/genética , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional
10.
Chemistry ; 25(12): 3091-3097, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30548937

RESUMO

Directional self-assembly of uncharged molecules in water is a major challenge in supramolecular chemistry. Herein, it is demonstrated that peptide-based cavitands wrap around a hydrophobic core (fullerene C60 ) by a combination of the hydrophobic effect and hydrogen-bonding interactions to form highly ordered three-component complexes in water that resemble the molten-globule stage of protein folding. The complexes were characterized by DOSY NMR spectroscopy, small-angle X-ray scattering, and circular dichroism, and their structures were confirmed by X-ray crystallography. Enhancement of the CD signals by nearly one order of magnitude and increased hydrolytic stability of hydrazone bonds of the complexes relative to the nonassembled species were observed. In contrast, DMSO and DMSO/water mixtures were found to be highly disintegrative for these complexes. Interestingly, some cavitands can only be synthesized in the presence of the hydrophobic template followed by disassembly of the complexes.

11.
Drug Resist Updat ; 40: 1-12, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30466711

RESUMO

ß-Lactamases are hydrolytic enzymes capable of opening the ß-lactam ring of antibiotics such as penicillin, thus endowing the bacteria that produce them with antibiotic resistance. Of particular medical concern are metallo-ß-lactamases (MBLs), with an active site built around coordinated Zn cations. MBLs are pan-reactive enzymes that can break down almost all classes of ß-lactams, including such last-resort antibiotics as carbapenems. They are not only broad-spectrum-reactive but are often plasmid-borne (e.g., the New Delhi enzyme, NDM), and can spread horizontally even among unrelated bacteria. Acquired MBLs are encoded by mobile genetic elements, which often include other resistance genes, making the microbiological situation particularly alarming. There is an urgent need to develop MBL inhibitors in order to rescue our antibiotic armory. A number of such efforts have been undertaken, most notably using the 3D structures of various MBLs as drug-design targets. Structure-guided drug discovery depends on the quality of the structures that are collected in the Protein Data Bank (PDB) and on the consistency of the information in dedicated ß-lactamase databases. We conducted a careful review of the crystal structures of class B ß-lactamases, concluding that the quality of these structures varies widely, especially in the regions where small molecules interact with the macromolecules. In a number of examples the interpretation of the bound ligands (e.g., inhibitors, substrate/product analogs) is doubtful or even incorrect, and it appears that in some cases the modeling of ligands was not supported by electron density. For ten MBL structures, alternative interpretations of the original diffraction data could be proposed and the new models have been deposited in the PDB. In four cases, these models, prepared jointly with the authors of the original depositions, superseded the previous deposits. This review emphasizes the importance of critical assessment of structural models describing key drug design targets at the level of the raw experimental data. Since the structures reviewed here are the basis for ongoing design of new MBL inhibitors, it is important to identify and correct the problems with ambiguous crystallographic interpretations, thus enhancing reproducibility in this highly medically relevant area.


Assuntos
Modelos Estruturais , Inibidores de beta-Lactamases/química , beta-Lactamases/química , beta-Lactamas/química , Pesquisa Biomédica , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Especificidade por Substrato , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia
12.
Nucleic Acids Res ; 44(17): 8479-89, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27521371

RESUMO

The refinement of macromolecular structures is usually aided by prior stereochemical knowledge in the form of geometrical restraints. Such restraints are also used for the flexible sugar-phosphate backbones of nucleic acids. However, recent highly accurate structural studies of DNA suggest that the phosphate bond angles may have inadequate description in the existing stereochemical dictionaries. In this paper, we analyze the bonding deformations of the phosphodiester groups in the Cambridge Structural Database, cluster the studied fragments into six conformation-related categories and propose a revised set of restraints for the O-P-O bond angles and distances. The proposed restraints have been positively validated against data from the Nucleic Acid Database and an ultrahigh-resolution Z-DNA structure in the Protein Data Bank. Additionally, the manual classification of PO4 geometry is compared with geometrical clusters automatically discovered by machine learning methods. The machine learning cluster analysis provides useful insights and a practical example for general applications of clustering algorithms for automatic discovery of hidden patterns of molecular geometry. Finally, we describe the implementation and application of a public-domain web server for automatic generation of the proposed restraints.


Assuntos
Ésteres/química , Conformação de Ácido Nucleico , Polinucleotídeos/química , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Internet , Reprodutibilidade dos Testes , Coloração e Rotulagem
13.
J Struct Biol ; 193(1): 55-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26644353

RESUMO

Plant pathogenesis-related class 10 (PR-10) proteins are a family of abundant proteins initially identified as elements of the plant defense system. The key structural feature suggesting PR-10 functionality is a huge hydrophobic cavity created in the protein interior by a scaffold composed of an extended ß-sheet wrapped around a long and flexible C-terminal α-helix. Several crystallographic and NMR studies have shown that the cavity can accommodate a variety of small molecule ligands, including phytohormones. The article describes ∼1.3 Å resolution crystal structures of a Lupinus luteus PR-10 isoform LlPR-10.1A, in its free form and in complex with trans-zeatin, a naturally occurring plant hormone belonging to the cytokinin group. Moreover we present the structure of the same protein where the saturation with zeatin is not complete. This set of three crystal structures allows us to track the structural adaptation of the protein upon trans-zeatin docking, as well as the sequence of the ligand-binding events, step-by-step. In addition, titration of LlPR-10.1A with trans-zeatin monitored in solution by CD spectra, confirmed the pattern of structural adaptations deduced from the crystallographic studies. The ligand-biding mode shows no similarity to other zeatin complexes of PR-10 proteins. The present work, which describes the first atomic models of the same PR-10 protein with and without a physiological ligand, reveals that the conformation of LlPR-10.1A undergoes a significant structural rearrangement upon trans-zeatin binding.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas/metabolismo , Zeatina/metabolismo
14.
Proteins ; 84(9): 1275-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27231838

RESUMO

An improved algorithm for the calculation of the volume of internal cavities within protein structures and virus capsids as well as the volumes occupied by single amino acid residues were presented. The geometrical approach was based on atomic van der Waals radii. The results obtained with two sets of the radii, those proposed by Pauling and those determined by Tsai et al were compared. The main improvement compared with our previous approach is a more elaborate treatment of the regions at the very boundary of the cavities, which yields a more accurate volume estimate. The cavity volume of a number of Plant Pathogenesis-Related proteins of class 10 (PR-10) were reevaluated and the volumes and other geometrical parameters for about 400 capsids of icosahedral viruses were reported. Using the same approach the volumes of amino acid residues in polypeptides as mean values averaged over multiple conformations of the side chain were also estimated. Proteins 2016; 84:1275-1286. © 2016 Wiley Periodicals, Inc.


Assuntos
Aminoácidos/química , Proteínas do Capsídeo/química , Capsídeo/química , Vírus/química , Algoritmos , Capsídeo/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Termodinâmica , Vírus/classificação , Vírus/ultraestrutura
15.
Proteins ; 84(6): 770-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26914344

RESUMO

In a recently published article (Yao, Flight, Rouchka, and Moseley, Proteins 2015;83:1470-1487) the authors proposed novel Zn coordination patterns in protein structures, apparently discovered using an unprejudiced approach to the information collected in the Protein data Bank (PDB), which they advocated as superior to the prior-knowledge-informed paradigm. In our assessment of those propositions we demonstrate here that most, if not all, of the "new" coordination geometries are fictitious, as they are based on incorrectly interpreted protein crystal structures, which in themselves are often not error-free. The flaws of interpretation include partial or wrong Zn sites, missed or wrong ligands, ignored crystal symmetry and ligands, etc. In conclusion, we warn against using this and similar meta-analyses that ignore chemical and crystallographic knowledge, and emphasize the importance of safeguarding structural databases against bad apples. Proteins 2016; 84:770-776. © 2016 Wiley Periodicals, Inc.


Assuntos
Metaloproteínas/química , Zinco/química , Animais , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Estereoisomerismo
16.
Chemistry ; 22(9): 3148-55, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26808958

RESUMO

Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen-bond-based self-assembly. The dynamic character of the linkers and the preference of the peptides towards self-assembly into ß-barrel-type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å(3) and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self-sorting and chiral self-assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70 , is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70 , and the X-ray structures provide unique information on the modes of peptide-fullerene interactions.


Assuntos
Calixarenos/química , Fulerenos/química , Peptídeos/química , Fenilalanina/análogos & derivados , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenilalanina/química , Estereoisomerismo
17.
Postepy Biochem ; 62(3): 401-407, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28132496

RESUMO

Macromolecules, such as proteins or nucleic acids, form crystals with a large volume fraction of water, ~50% on average. Apart from typical physical defects and rather trivial poor quality problems, macromolecular crystals, as essentially any crystals, can also suffer from several kinds of pathologies, in which everything seems to be perfect, except that from the structural point of view the interpretation may be very difficult, sometimes even impossible. A frequent nuisance is pseudosymmetry, or non-crystallographic symmetry (NCS), which is particularly nasty when it has translational character. Lattice-translocation defects, also called order-disorder twinning (OD-twinning), occur when molecules are packed regularly in layers but the layers are stacked (without rotation) in two (or more) discrete modes, with a unique translocation vector. Crystal twinning arises when twin domains have different orientations, incompatible with the symmetry of the crystal structure. There are also crystals in which the periodic (lattice) order is broken or absent altogether. When the strict short-range translational order from one unit cell to the next is lost but the long-range order is restored by a periodic modulation, we have a modulated crystal structure. In quasicrystals (not observed for macromolecules yet), the periodic order (in 3D space) is lost completely and the diffraction pattern (which is still discrete) cannot be even indexed using three hkl indices. In addition, there are other physical defects and phenomena (such as high mosaicity, diffraction anisotropy, diffuse scattering, etc.) which make diffraction data processing and structure solution difficult or even impossible.


Assuntos
Cristalografia/métodos , Cristalização
18.
Postepy Biochem ; 62(3): 242-249, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28132477

RESUMO

The Protein Data Bank (PDB), created in 1971 when merely seven protein crystal structures were known, today holds over 120, 000 experimentally-determined three-dimensional models of macromolecules, including gigantic structures comprised of hundreds of thousands of atoms, such as ribosomes and viruses. Most of the deposits come from X-ray crystallography experiments, with important contributions also made by NMR spectroscopy and, recently, by the fast growing Cryo-Electron Microscopy. Although the determination of a macromolecular crystal structure is now facilitated by advanced experimental tools and by sophisticated software, it is still a highly complicated research process requiring specialized training, skill, experience and a bit of luck. Understanding the plethora of structural information provided by the PDB requires that its users (consumers) have at least a rudimentary initiation. This is the purpose of this educational overview.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Cristalografia por Raios X , Guias como Assunto , Microscopia Eletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas/metabolismo
19.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 9): 1965-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26327386

RESUMO

The anticancer activity of platinum-containing drugs such as cisplatin and carboplatin is considered to primarily arise from their interactions with nucleic acids; nevertheless, these drugs, or the products of their hydrolysis, also bind to proteins, potentially leading to the known side effects of the treatments. Here, over 40 crystal structures deposited in the Protein Data Bank (PDB) of cisplatin and carboplatin complexes of several proteins were analysed. Significant problems of either a crystallographic or a chemical nature were found in most of the presented atomic models and they could be traced to less or more serious deficiencies in the data-collection and refinement procedures. The re-evaluation of these data and models was possible thanks to their mandatory or voluntary deposition in publicly available databases, emphasizing the point that the availability of such data is critical for making structural science reproducible. Based on this analysis of a selected group of macromolecular structures, the importance of deposition of raw diffraction data is stressed and a procedure for depositing, tracking and using re-refined crystallographic models is suggested.


Assuntos
Antineoplásicos/química , Carboplatina/química , Cisplatino/química , Proteínas/química , Cristalografia por Raios X , Ligantes , Estrutura Molecular
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1444-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26143916

RESUMO

The presence of H atoms connected to either or both of the two N atoms of the imidazole moiety in a histidine residue affects the geometry of the five-membered ring. Analysis of the imidazole moieties found in histidine residues of atomic resolution protein crystal structures in the Protein Data Bank (PDB), and in small-molecule structures retrieved from the Cambridge Structural Database (CSD), identified characteristic patterns of bond lengths and angles related to the protonation state of the imidazole moiety. Using discriminant analysis, two functions could be defined, corresponding to linear combinations of the four most sensitive stereochemical parameters, two bond lengths (ND1-CE1 and CE1-NE2) and two endocyclic angles (-ND1- and -NE2-), that uniquely identify the protonation states of all imidazole moieties in the CSD and can be used to predict which N atom(s) of the histidine side chains in protein structures are protonated. Updated geometrical restraint target values are proposed for differently protonated histidine side chains for use in macromolecular refinement.


Assuntos
Histidina/química , Imidazóis/química , Proteínas/química , Prótons , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligação de Hidrogênio , Conformação Proteica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa