Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519817

RESUMO

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Assuntos
Formação de Anticorpos , Humanos , Camundongos , Animais , Preparações Farmacêuticas
2.
Biotechnol Bioeng ; 119(8): 2088-2104, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35437754

RESUMO

Host cell proteins (HCPs) are a significant class of process-related impurities commonly associated with the manufacturing of biopharmaceuticals. However, due to the increased use of crude enzymes as biocatalysts for modern organic synthesis, HCPs can also be introduced as a new class of impurities in chemical drugs. In both cases, residual HCPs need to be adequately controlled to ensure product purity, quality, and patient safety. Although a lot of attentions have been focused on defining a universally acceptable limit for such impurities, the risks associated with residual HCPs on product quality, safety, and efficacy often need to be determined on a case-by-case basis taking into consideration the residual HCP profile in the product, the dose, dosage form, administration route, and so forth. Here we describe the unique challenges for residual HCP control presented by the biocatalytic synthesis of an investigational stimulator of interferon genes protein agonist, MK-1454, which is a cyclic dinucleotide synthesized using Escherichia coli cell lysate overexpressing cyclic GMP-AMP synthase as a biocatalyst. In this study, a holistic characterization of residual protein impurities using a variety of analytical tools including nanoscale liquid chromatography coupled to tandem mass spectrometry, together with in silico immunogenicity prediction of identified proteins, facilitated risk assessment and guided process development to achieve adequate removal of residual protein impurities in MK-1454 active pharmaceutical ingredient.


Assuntos
Proteínas , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Preparações Farmacêuticas , Proteínas/análise , Medição de Risco
3.
Br J Haematol ; 190(6): 923-932, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32311075

RESUMO

Antibodies to first-generation recombinant thrombopoietin (TPO) neutralized endogenous TPO and caused thrombocytopenia in some healthy subjects and chemotherapy patients. The second-generation TPO receptor agonist romiplostim, having no sequence homology to TPO, was developed to avoid immunogenicity. This analysis examined development of binding and neutralising antibodies to romiplostim or TPO among adults with immune thrombocytopenia (ITP) in 13 clinical trials and a global postmarketing registry. 60/961 (6·2%) patients from clinical trials developed anti-romiplostim-binding antibodies post-baseline. The first positive binding antibody was detected 14 weeks (median) after starting romiplostim, at median romiplostim dose of 2 µg/kg and median platelet count of 29.5 × 109 /l; most subjects had ≥98·5% of platelet assessments showing response. Neutralising antibodies to romiplostim developed in 0·4% of patients, but were unrelated to romiplostim dose and did not affect platelet count. Thirty-three patients (3·4%) developed anti-TPO-binding antibodies; none developed anti-TPO-neutralising antibodies. In the global postmarketing registry, 9/184 (4·9%) patients with spontaneously submitted samples had binding antibodies. One patient with loss of response had anti-romiplostim-neutralising antibodies (negative at follow-up). Collectively, anti-romiplostim-binding antibodies developed infrequently. In the few patients who developed neutralising antibodies to romiplostim, there was no cross-reactivity with TPO and no associated loss of platelet response.


Assuntos
Anticorpos Neutralizantes , Vigilância de Produtos Comercializados , Púrpura Trombocitopênica Idiopática , Receptores Fc , Proteínas Recombinantes de Fusão , Sistema de Registros , Trombopoetina , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/imunologia , Receptores Fc/administração & dosagem , Receptores Fc/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/imunologia , Estudos Retrospectivos , Trombopoetina/administração & dosagem , Trombopoetina/efeitos adversos , Trombopoetina/imunologia
4.
Pharm Res ; 34(12): 2817-2828, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110285

RESUMO

PURPOSE: To physicochemically characterize and compare monoclonal antibody (mAb) solutions containing aggregates generated via metal catalyzed oxidation (MCO). METHODS: Two monoclonal IgG2s (mAb1 and mAb2) and one monoclonal IgG1 (rituximab) were exposed to MCO with the copper/ascorbic acid oxidative system, by using several different methods. The products obtained were characterized by complementary techniques for aggregate and particle analysis (from oligomers to micron sized species), and mass spectrometry methods to determine the residual copper content and chemical modifications of the proteins. RESULTS: The particle size distribution and the morphology of the protein aggregates generated were similar for all mAbs, independent of the MCO method used. There were differences in both residual copper content and in chemical modification of specific residues, which appear to be dependent on both the protein sequence and the protocol used. All products showed a significant increase in the levels of oxidized His, Trp, and Met residues, with differences in extent of modification and specific amino acid residues modified. CONCLUSION: The extent of total oxidation and the amino acid residues with the greatest oxidation rate depend on a combination of the MCO method used and the protein sequence.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cobre/química , Imunoglobulina G/química , Agregados Proteicos , Rituximab/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Catálise , Humanos , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Soluções
5.
Clin Pharmacol Ther ; 115(2): 188-200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983584

RESUMO

CAR-T therapies have shown remarkable efficacy against hematological malignancies in the clinic over the last decade and new studies indicate that progress is being made to use these novel therapies to target solid tumors as well as treat autoimmune disease. Innovation in the field, including TCR-T, allogeneic or "off the shelf" CAR-T, and autoantigen/armored CAR-Ts are likely to increase the efficacy and applications of these therapies. The unique aspects of these cell-based therapeutics; patient-derived cells, intracellular expression, in vivo expansion, and phenotypic changes provide unique bioanalytical challenges to develop pharmacokinetic and immunogenicity assessments. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Translational and ADME Sciences Leadership Group (TALG) has brought together a group of industry experts to discuss and consider these challenges. In this white paper, we present the IQ consortium perspective on the best practices and considerations for bioanalytical and immunogenicity aspects toward the optimal development of CAR-T and TCR-T cell therapies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Neoplasias/metabolismo , Imunoterapia Adotiva
6.
Mol Ther Methods Clin Dev ; 32(1): 101217, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38496304

RESUMO

Recombinant adeno-associated virus (AAV) vectors are the leading delivery vehicle used for in vivo gene therapies. Anti-AAV antibodies (AAV Abs) can interact with the viral capsid component of an AAV-based gene therapy (GT). Therefore, patients with preexisting AAV Abs (seropositive patients) are often excluded from GT trials to prevent treatment of patients who are unlikely to benefit1 or may have a higher risk for adverse events outweighing treatment benefits. On the contrary, unnecessary exclusion of patients with high unmet medical need should be avoided. Instead, a risk-benefit assessment that weighs the potential risks due to seropositivity vs. severity of disease and available treatment options, should drive the decision if patient selection is required. Assays for patient selection must be validated according to their intended use following national regulations/standards for diagnostic assays in appropriate laboratories. In this review, we summarize the current process of patient selection, including assay cutoff criteria and related assay validation approaches. We further provide considerations on regulatory requirements for the development of in vitro diagnostic tests supporting market authorization of a corresponding GT.

7.
J Pharm Sci ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768755

RESUMO

Cell therapies such as genetically modified T cells have emerged as a promising and viable treatment for hematologic cancers and are being aggressively pursued for a wide range of diseases and conditions that were previously difficult to treat or had no cure. The process development requires genetic modifications to T cells to express a receptor (engineered T cell receptor (eTCR)) of specific binding qualities to the desired target. Protein reagents utilized during the cell therapy manufacturing process, to facilitate these genetic modifications, are often present as process-related impurities at residual levels in the final drug product and can represent a potential immunogenicity risk upon infusion. This manuscript presents a framework for the qualification of an assay for assessing the immunogenicity risk of AA6 and Cas9 residuals. The same framework applies for other residuals; however, AAV6 and Cas9 were selected as they were residuals from the manufacturing of an engineered T cell receptor cellular product in development. The manuscript: 1) elucidates theoretical risks, 2) summarizes analytical data collected during process development, 3) describes the qualification of an in vitro human PBMC cytokine release assay to assess immunogenicity risk from cellular product associated process residuals; 4) identifies a multiplexed inflammatory innate and adaptive cytokine panel with pre-defined criteria using relevant positive controls; and 5) discusses qualification challenges and potential solutions for establishing meaningful thresholds. The assessment is not only relevant to establishing safe exposure levels of these residuals but also in guiding risk assessment and CMC strategy during the conduct of clinical trials.

8.
J Biol Chem ; 287(30): 25266-79, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22584577

RESUMO

Aggregation of biotherapeutics has the potential to induce an immunogenic response. Here, we show that aggregated therapeutic antibodies, previously generated and determined to contain a variety of attributes (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118-25133), can enhance the in vitro innate immune response of a population of naive human peripheral blood mononuclear cells. This response depended on the aggregate type, inherent immunogenicity of the monomer, and donor responsiveness, and required a high number of particles, well above that detected in marketed drug products, at least in this in vitro system. We propose a cytokine signature as a potential biomarker of the in vitro peripheral blood mononuclear cell response to aggregates. The cytokines include IL-1ß, IL-6, IL-10, MCP-1, MIP-1α, MIP-1ß, MMP-2, and TNF-α. IL-6 and IL-10 might have an immunosuppressive effect on the long term immune response. Aggregates made by stirring induced the highest response compared with aggregates made by other methods. Particle size in the 2-10 µm range and the retention of some folded structure were associated with an increased response. The mechanism of aggregate activation at the innate phase was found to occur through specific cell surface receptors (the toll-like receptors TLR-2 and TLR-4, FcγRs, and the complement system). The innate signal was shown to progress to an adaptive T-cell response characterized by T-cell proliferation and secretion of T-cell cytokines. Investigating the ability of aggregates to induce cytokine signatures as biomarkers of immune responses is essential for determining their risk of immunogenicity.


Assuntos
Anticorpos/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos , Linfócitos T/imunologia , Anticorpos/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Receptores de IgG/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/citologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia
9.
Clin Immunol ; 149(3): 534-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24263283

RESUMO

Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.


Assuntos
Produtos Biológicos/imunologia , Imunidade Celular/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Bioensaio , Produtos Biológicos/administração & dosagem , Biomarcadores Farmacológicos/análise , Citocinas/administração & dosagem , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Simulação de Acoplamento Molecular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
10.
Toxicol Pathol ; 41(7): 951-69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475561

RESUMO

Cynomolgus monkeys dosed with a therapeutic monoclonal antibody (mAbY.1) at ≥ 50 mg/kg had unexpected acute thrombocytopenia (nadir ~3,000 platelets/µl), sometimes with decreases in red cell mass. Increased activated macrophages, mitotic figures, and erythrophagocytosis were observed in the spleen. Binding of mAbY.1 to cynomolgus peripheral blood cells could not be detected in vitro. mAbY.1 induced phagocytosis of platelets by peripheral blood monocytes from cynomolgus monkeys, but not from humans. mAbs sharing the same constant domain (Fc) sequences, but differing from mAbY.1 in their variable domains, bound competitively to and had similar biological activity against the intended target. None of these antibodies had hematologic liabilities in vitro or in vivo. Neither the F(ab')2 portion of mAbY.1 nor the F(ab')2 portion on an aglycosylated Fc (IgG1) framework caused phagocytosis of platelets in vitro. These data suggest that the hematologic effects of mAbY.1 in cynomolgus monkeys likely occurred through an off-target mechanism, shown to be driven by 1 to 3 amino acid differences in the light chain. The hematologic effects made mAbY.1 an unsuitable candidate for further development as a therapeutic agent. This example demonstrates that nonclinical safety studies may be essential for understanding off-target effects of mAbs prior to clinical trials.


Assuntos
Anemia/induzido quimicamente , Anticorpos Monoclonais/toxicidade , Trombocitopenia/induzido quimicamente , Anemia/sangue , Animais , Anticorpos Monoclonais/administração & dosagem , Plaquetas/patologia , Feminino , Humanos , Macaca fascicularis , Ativação de Macrófagos , Masculino , Fagocitose , Reticulócitos/patologia , Baço/efeitos dos fármacos , Baço/patologia , Trombocitopenia/sangue
11.
Front Immunol ; 14: 1151888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251396

RESUMO

Immunogenicity continues to pose a challenge in the development of biotherapeutics like conventional therapeutic-proteins and monoclonal antibodies as well as emerging modalities such as gene-therapy components, gene editing, and CAR T cells. The approval of any therapeutic is based on a benefit-risk evaluation. Most biotherapeutics address serious medical conditions where the standard of care has a poor outcome. Consequently, even if immunogenicity limits the utility of the therapeutic in a sub-set of patients, the benefit-risk assessment skews in favor of approval. Some cases resulted in the discontinuation of biotherapeutics due to immunogenicity during drug development processes, This special issue presents a platform for review articles offering a critical assessment of accumulated knowledge as well as novel findings related to nonclinical risks that extend our understanding of the immunogenicity of biotherapeutics. Some of the studies in this collection leveraged assays and methodologies refined over decades to support more clinically relevant biological samples. Others have applied rapidly advancing methodologies in pathway-specific analyses to immunogenicity. Similarly, the reviews address urgent issues such as the rapidly emerging cell and gene therapies which hold immense promise but could have limited reach as a significant number of the patient population could potentially not benefit due to immunogenicity. In addition to summarizing the work presented in this special issue we have endeavored to identify areas where additional studies are required to understand the risks of immunogenicity and develop appropriate mitigation strategies.


Assuntos
Anticorpos Monoclonais , Humanos , Anticorpos Monoclonais/uso terapêutico , Medição de Risco
12.
J Pharm Sci ; 112(5): 1345-1350, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736775

RESUMO

Vaccines against SARS-CoV-2 have transformed the course of the COVID-19 pandemic with more than 30 authorizations. More than 2 billion people have been vaccinated with these vaccines developed on very different manufacturing platforms. We have reviewed the unprecedented work done in various aspects of the authorized vaccines and listed three potential improvements: 1) long-term stability at room-temperature conditions; 2) suitability for diverse populations such as infants, elderly, immune-compromised, and those with pre-existing or ongoing diseases; and 3) ability to act against different strains. In this article, we have discussed the current status of COVID-19 vaccines with respect to 1) diversity (strength and breadth) of initial immune responses and long-term immune memory; 2) prime-boost combinations that induce protection against variants; and 3) breakthrough infections. Further, we have listed host, product (critical quality attributes), and viral pathogenic factors that contribute to safety, efficacy, and effectiveness of vaccines. In addition, we have elaborated on the potential to (develop models and) determine the immune correlates that can predict long-term immune memory. The graphical representation of the abstract is provided as Fig. 1.


Assuntos
COVID-19 , Vacinas , Idoso , Humanos , Lactente , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pandemias , SARS-CoV-2
13.
AAPS J ; 25(3): 35, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012501

RESUMO

Pre-existing adeno-associated viruses (AAV) neutralizing antibodies (NAb) can prevent AAV vectors from transducing target tissues. The immune responses can include binding/total antibodies (TAb) and neutralizing antibodies (NAb). This study is aimed at comparing total antibody assay (TAb) and cell-based NAb assay against AAV8 to help inform the best assay format for patient exclusion criteria. We developed a chemiluminescence-based enzyme-linked immunosorbent assay to analyze AAV8 TAb in human serum. The specificity of AAV8 TAb was determined using a confirmatory assay. A COS-7-based assay was used to analyze anti-AAV8 NAbs. The TAb screening cut point factor was determined to be 2.65, and the confirmatory cut point (CCP) was 57.1%. The prevalence of AAV8 TAb in 84 normal subjects was 40%, of which 24% were NAb positive and 16% were NAb negative. All NAb-positive subjects were confirmed to be TAb-positive and also passed the CCP-positive criteria. All 16 NAb-negative subjects did not pass the CCP criterion for the positive specificity test. There was a high concordance between AAV8 TAb confirmatory assay and NAb assay. The confirmatory assay improved the specificity of the TAb screening test and confirmed neutralizing activity. We proposed a tiered assay approach, in which an anti-AAV8 screening assay should be followed by a confirmatory assay during pre-enrollment for patient exclusions for AAV8 gene therapy. This approach can be used in lieu of developing a NAb assay and can be also implemented as a companion diagnostic assay for post-marketing seroreactivity assessments due to ease of development and use.


Assuntos
Anticorpos Neutralizantes , Terapia Genética , Humanos , Testes Imunológicos , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos
14.
Clin Pharmacol Ther ; 114(3): 664-672, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422675

RESUMO

Recently, multiple chimeric antigen receptor T-cell (CAR-T)-based therapies have been approved for treating hematological malignancies, targeting CD19 and B-cell maturation antigen. Unlike protein or antibody therapies, CAR-T therapies are "living cell" therapies whose pharmacokinetics are characterized by expansion, distribution, contraction, and persistence. Therefore, this unique modality requires a different approach for quantitation compared with conventional ligand binding assays implemented for most biologics. Cellular (flow cytometry) or molecular assays (polymerase chain reaction (PCR)) can be deployed with each having unique advantages and disadvantages. In this article, we describe the molecular assays utilized: quantitative PCR (qPCR), which was the initial platform used to estimate transgene copy numbers and more recently droplet digital PCR (ddPCR) which quantitates the absolute copy numbers of CAR transgene. The comparability of the two methods in patient samples and of each method across different matrices (isolated CD3+ T-cells or whole blood) was also performed. The results show a good correlation between qPCR and ddPCR for the amplification of same gene in clinical samples from a CAR-T therapy trial. In addition, our studies show that the qPCR-based amplification of transgene levels was well-correlated, independent of DNA sources (either CD3+ T-cells or whole blood). Our results also highlight that ddPCR can be a better platform for monitoring samples at the early phase of CAR-T dosing prior to expansion and during long-term monitoring as they can detect samples with very low copy numbers with high sensitivity, in addition to easier implementation and sample logistics.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Cinética , Reação em Cadeia da Polimerase/métodos , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos
15.
Clin Pharmacol Ther ; 114(3): 530-557, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393588

RESUMO

With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.


Assuntos
Neoplasias , Farmacologia Clínica , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Neoplasias/terapia , Imunoterapia Adotiva/efeitos adversos
16.
AAPS J ; 25(3): 47, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101079

RESUMO

The number of approved or investigational late phase viral vector gene therapies (GTx) has been rapidly growing. The adeno-associated virus vector (AAV) technology continues to be the most used GTx platform of choice. The presence of pre-existing anti-AAV immunity has been firmly established and is broadly viewed as a potential deterrent for successful AAV transduction with a possibility of negative impact on clinical efficacy and a connection to adverse events. Recommendations for the evaluation of humoral, including neutralizing and total antibody based, anti-AAV immune response have been presented elsewhere. This manuscript aims to cover considerations related to the assessment of anti-AAV cellular immune response, including review of correlations between humoral and cellular responses, potential value of cellular immunogenicity assessment, and commonly used analytical methodologies and parameters critical for monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development who represent several pharma and contract research organizations. It is our intent to provide recommendations and guidance to the industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV cellular immune response assessment.


Assuntos
Dependovirus , Terapia Genética , Dependovirus/genética , Terapia Genética/métodos , Imunidade Celular , Vetores Genéticos
17.
AAPS J ; 25(4): 55, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266912

RESUMO

A survey conducted by the Therapeutic Product Immunogenicity (TPI) community within the American Association of Pharmaceutical Scientists (AAPS) posed questions to the participants on their immunogenicity risk assessment strategies prior to clinical development. The survey was conducted in 2 phases spanning 5 years, and queried information about in silico algorithms and in vitro assay formats for immunogenicity risk assessments and how the data were used to inform early developability effort in discovery, chemistry, manufacturing and control (CMC), and non-clinical stages of development. The key findings representing the trends from a majority of the participants included the use of high throughput in silico algorithms, human immune cell-based assays, and proteomics based outputs, as well as specialized assays when therapeutic mechanism of action could impact risk assessment. Additional insights into the CMC-related risks could also be gathered with the same tools to inform future process development and de-risk critical quality attributes with uncertain and unknown risks. The use of the outputs beyond supporting early development activities was also noted with participants utilizing the risk assessments to drive their clinical strategy and streamline bioanalysis.


Assuntos
Desenvolvimento de Medicamentos , Humanos , Consenso , Medição de Risco/métodos
18.
AAPS J ; 25(5): 78, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523051

RESUMO

Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.


Assuntos
Dependovirus , Terapia Genética , Humanos , Dependovirus/genética , Distribuição Tecidual , Desenvolvimento de Medicamentos , Reação em Cadeia da Polimerase
19.
Bioanalysis ; 15(14): 773-814, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37526071

RESUMO

The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.


Assuntos
Medicamentos sob Prescrição , Tecnologia , Bioensaio/métodos , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos
20.
J Pharm Sci ; 111(4): 960-969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122828

RESUMO

Immunogenicity to biologics is often observed following dosing in human subjects during clinical trials. Both product and host specific factors may be implicated in contributing to a potential immune response. However, even if such risk factors are identified and eliminated as part of the rational quality by design approaches, the outcome in clinic can be uncertain and challenging to predict. Several tools have been employed to identify these risk factors and consequent mitigation approaches implemented prior to dosing in humans. However, the complexity of the immune system with an interplay of network of immune cells involved in driving a long- term immune response as well as patient characteristics, can make it challenging to predict the outcome in clinic. This perspective will provide an insight into recent advances in the risk assessment approaches that are utilized during preclinical stage of development of a biologic. The outputs from such tools can help to rank order and select the most optimal candidate with the least likelihood of an immune response and can further drive the development of a clinical bioanalytical and immunogenicity monitoring strategy. Such a strategy can be proactively shared with the regulators along with the proposal to streamline clinical immunogenicity and personalizing the outcome based on pharmacogenomics and other patient-related factors. This paper provides a roadmap on performing risk assessments through a systematic identification of risks and their mitigations wherever possible. Recommendations on incorporating the key components of such risk assessments as part of the new regulatory submissions are also provided. Shorter abstract Immunogenicity to biologics is common during clinical trials. Both product and host specific factors have been implicated. Several risk assessment tools can be used to identify and mitigate the risk factors responsible for immunogenicity. An insight into recent advances in the risk assessment approaches will be presented. The outputs can define a risk score and guide the clinical bioanalytical and immunogenicity monitoring strategy. A roadmap on performing risk assessments through a systematic identification of risks and their mitigations wherever possible is provided. Best practices for a risk assessment strategy and recommendations on the content for IND and the Integrated summary of Immunogenicity are also provided.


Assuntos
Produtos Biológicos , Humanos , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa