Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 12(11): 15500-19, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23202220

RESUMO

This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.


Assuntos
Agricultura , Frutas , Praguicidas , Ultrassom/instrumentação , Algoritmos , Calibragem , Computadores , Folhas de Planta/química , Software
2.
PLoS One ; 14(4): e0214315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017938

RESUMO

In the process of applying a plant protection product mixed with water (spray mixture) at the prescribed concentration with conventional sprayers for chemical protection of tree canopies in an orchard, standard models are used to express the dose rate of the plant protection product. Characteristic properties of the tree canopy in an orchard are not taken into consideration. Such models result in fixed quantities of spray mixture being sprayed through individual nozzles into a tree canopy. In this research work, an autonomous system is presented, which ensures a controlled quantity of spray mixture sprayed through the nozzles onto different tree canopy segments. The autonomous system is based on a fuzzy logic system (FLS) that includes information about the estimated leaf area to ensure more appropriate control of the spray mixture. An integral part of the FLS is a fuzzy logic controller for three electromagnetic valves operating in the pulse width mode and installed on the axial sprayer prototype. The results showed that, with the FLS, it was possible to control the quantity of spray mixture in the specific range depending on the estimated value of the leaf area, with a quantitative spray mixture average saving of 17.92%. For the phenological growth stage BBCH 91, this method represents a powerful tool for reducing the quantity of spray mixture for plant protection in the future.


Assuntos
Proteção de Cultivos , Lógica Fuzzy , Malus/fisiologia , Automação , Folhas de Planta/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa