Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388456

RESUMO

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Transcriptoma , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Apirase/antagonistas & inibidores , Apirase/imunologia , Linhagem Celular Tumoral , Humanos , Antígenos Comuns de Leucócito/antagonistas & inibidores , Antígenos Comuns de Leucócito/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 1 de Transcrição de Linfócitos T/metabolismo
2.
Cell ; 175(4): 984-997.e24, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388455

RESUMO

Immune checkpoint inhibitors (ICIs) produce durable responses in some melanoma patients, but many patients derive no clinical benefit, and the molecular underpinnings of such resistance remain elusive. Here, we leveraged single-cell RNA sequencing (scRNA-seq) from 33 melanoma tumors and computational analyses to interrogate malignant cell states that promote immune evasion. We identified a resistance program expressed by malignant cells that is associated with T cell exclusion and immune evasion. The program is expressed prior to immunotherapy, characterizes cold niches in situ, and predicts clinical responses to anti-PD-1 therapy in an independent cohort of 112 melanoma patients. CDK4/6-inhibition represses this program in individual malignant cells, induces senescence, and reduces melanoma tumor outgrowth in mouse models in vivo when given in combination with immunotherapy. Our study provides a high-resolution landscape of ICI-resistant cell states, identifies clinically predictive signatures, and suggests new therapeutic strategies to overcome immunotherapy resistance.


Assuntos
Antineoplásicos/uso terapêutico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Melanoma/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/imunologia , Evasão Tumoral , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Masculino , Melanoma/tratamento farmacológico , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia
4.
Annu Rev Med ; 69: 333-347, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29099676

RESUMO

Molecularly targeted therapy and immunotherapy have dramatically changed the landscape of available treatment options for patients with advanced cancer. Improved understanding of the molecular and genomic features of cancers over the last decade has led to the development of successful targeted therapies and the field of precision cancer medicine. As a result of these advances, patients whose tumors harbor select molecular alterations are eligible for treatment with targeted therapies active against the unique molecular aberration. Concurrently, advances in tumor immunology have led to the development of immunomodulatory antibodies targeting T cell coinhibitory receptors CTLA-4 and PD-1 (programmed death-1) that have shown activity in several cancer histologies, reinvigorating antitumor immune responses in a subset of patients. These immunomodulatory antibodies offer the promise of durable disease control. However, discrete genomic determinants of response to cancer immunotherapy, unlike molecularly targeted therapies, have remained elusive, and robust biomarkers are lacking. Recent advances in tumor profiling have begun to identify novel genomic features that may influence response and resistance to cancer immunotherapy, including tumor mutational burden (e.g., microsatellite instability), copy-number alterations, and specific somatic alterations that influence immune recognition and response. Further investigation into the molecular and genomic features of response and resistance to cancer immunotherapy will be needed. We review the recent advances in understanding the molecular and genomic determinants of response to cancer immunotherapy, with an emphasis on immune checkpoint inhibitors.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Antígeno CTLA-4/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Prognóstico
5.
Br J Cancer ; 118(1): 9-16, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29319049

RESUMO

Immune checkpoint inhibitors (ICI) targeting CTLA-4 and the PD-1/PD-L1 axis have shown unprecedented clinical activity in several types of cancer and are rapidly transforming the practice of medical oncology. Whereas cytotoxic chemotherapy and small molecule inhibitors ('targeted therapies') largely act on cancer cells directly, immune checkpoint inhibitors reinvigorate anti-tumour immune responses by disrupting co-inhibitory T-cell signalling. While resistance routinely develops in patients treated with conventional cancer therapies and targeted therapies, durable responses suggestive of long-lasting immunologic memory are commonly seen in large subsets of patients treated with ICI. However, initial response appears to be a binary event, with most non-responders to single-agent ICI therapy progressing at a rate consistent with the natural history of disease. In addition, late relapses are now emerging with longer follow-up of clinical trial populations, suggesting the emergence of acquired resistance. As robust biomarkers to predict clinical response and/or resistance remain elusive, the mechanisms underlying innate (primary) and acquired (secondary) resistance are largely inferred from pre-clinical studies and correlative clinical data. Improved understanding of molecular and immunologic mechanisms of ICI response (and resistance) may not only identify novel predictive and/or prognostic biomarkers, but also ultimately guide optimal combination/sequencing of ICI therapy in the clinic. Here we review the emerging clinical and pre-clinical data identifying novel mechanisms of innate and acquired resistance to immune checkpoint inhibition.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Humanos , Fatores Imunológicos/farmacologia , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
6.
Trends Cancer ; 10(6): 531-540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519366

RESUMO

TANK-binding kinase 1 (TBK1) is a versatile serine/threonine protein kinase with established roles in innate immunity, metabolism, autophagy, cell death, and inflammation. While best known for its role in regulating innate immunity, TBK1 has emerged as a cancer cell-intrinsic immune evasion gene by virtue of its role in modulating cellular responses to inflammatory signals emanating from the immune system. Beyond its effect on cancer cells, TBK1 appears to regulate lymphoid and myeloid cells in the tumor immune microenvironment. In this review, we detail recent advances in our understanding of the tumor-intrinsic and -extrinsic roles and regulation of TBK1 in tumor immunity.


Assuntos
Imunidade Inata , Neoplasias , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Animais , Evasão Tumoral/genética , Transdução de Sinais/imunologia , Autofagia/imunologia , Autofagia/genética
7.
Clin Cancer Res ; 30(15): 3243-3258, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767611

RESUMO

PURPOSE: Uveal melanoma (UM) is the most common intraocular malignant tumor. Despite successful treatment of the primary tumor, about 50% of patients will recur with systemic diseases for which there are no effective treatment strategies. Here we investigated the preclinical efficacy of a chimeric antigen receptor (CAR) T-cell-based immunotherapy targeting B7-H3. EXPERIMENTAL DESIGN: B7-H3 expression on primary and metastatic human UM samples and cell lines was assessed by RNA sequencing, flow cytometry, and immunohistochemistry. Antitumor activity of CAR T cells targeting B7-H3 was tested in vitro with UM cell lines, patient-derived organotypic tumor spheroids from patients with metastatic UM, and in immunodeficient and humanized murine models. RESULTS: B7-H3 is expressed at high levels in >95% UM tumor cells in vitro and in vivo. We generated a B7-H3 CAR with an inducible caspase-9 (iCas9) suicide gene controlled by the chemical inducer of dimerization AP1903, which effectively kills UM cells in vitro and eradicates UM liver metastases in murine models. Delivery of iCas9.B7-H3 CAR T cells in experimental models of UM liver metastases demonstrates a durable antitumor response, even upon tumor rechallenge or in the presence of a significant metastatic disease burden. We demonstrate effective iCas9.B7-H3 CAR T-cell elimination in vitro and in vivo in response to AP1903. Our studies demonstrate more effective tumor suppression with iCas9.B7-H3 CAR T cells as compared to a B7-H3-targeted humanized monoclonal antibody. CONCLUSIONS: These studies support a phase I clinical trial with iCas9.B7-H3 CAR T cells to treat patients with metastatic UM.


Assuntos
Antígenos B7 , Caspase 9 , Genes Transgênicos Suicidas , Imunoterapia Adotiva , Neoplasias Hepáticas , Melanoma , Receptores de Antígenos Quiméricos , Neoplasias Uveais , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias Uveais/terapia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/imunologia , Animais , Antígenos B7/genética , Camundongos , Melanoma/terapia , Melanoma/imunologia , Melanoma/genética , Melanoma/patologia , Melanoma/secundário , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
Nat Commun ; 15(1): 7357, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191779

RESUMO

Image-guided percutaneous cryoablation is an established minimally invasive oncologic treatment. We hypothesized that cryoablation may modify the immune microenvironment through direct modulation of the tumor, thereby generating an anti-tumor response in tumors refractory to immune checkpoint inhibition (ICI). In this non-randomized phase II single-center study (NCT03290677), subjects with unresectable melanoma progressing on ICI underwent cryoablation of an enlarging metastasis, and ICI was continued for a minimum of two additional cycles. The primary endpoints were safety, feasibility and tumor response in non-ablated lesions. From May 2018 through July 2020, 17 patients were treated on study. The study met its primary endpoints with the combination strategy found to be safe and feasible with an objective response rate of 23.5% and disease control rate of 41% (4 partial response, 3 stable disease). Our data support further study of this synergistic therapeutic approach.


Assuntos
Criocirurgia , Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/cirurgia , Melanoma/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Criocirurgia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Progressão da Doença , Adulto , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/cirurgia , Microambiente Tumoral/imunologia , Metástase Neoplásica , Resultado do Tratamento , Terapia Combinada , Idoso de 80 Anos ou mais
9.
Science ; 385(6705): eadl6173, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991060

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Isocitrato Desidrogenase , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , DNA/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Glutaratos/metabolismo , Imunidade Inata/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Neoplasias/imunologia , Neoplasias/genética , Nucleotidiltransferases/genética , Evasão Tumoral , Evasão da Resposta Imune/genética
10.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393682

RESUMO

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Assuntos
Complexo CD3 , Endopeptidases , Proteínas Ligadas por GPI , Imunoterapia Adotiva , Mesotelina , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Adenocarcinoma/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa