Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fungal Biol ; 126(5): 356-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501031

RESUMO

Successful application of microbial biofertilizers, such as phosphorus (P) solubilizing fungi to agroecosystems, is constrained from the lack of knowledge about their ecology; for example in terms of how they respond to an external input of carbon (C) to get established in the soil. In two soil incubation experiments we examined the performance of the P solubilizing fungus Penicillium aculeatum in non-sterile and semi-sterile (γ-irradiated) soil with different C and P sources. Results from the first experiment with C sources showed that starch and cellulose generally improved P solubilization by P. aculeatum measured as water extractable P (Pwep), though only significantly in non-sterile soil. This coincided with an increased population density of P. aculeatum measured with a hygromycin B resistant strain of this fungus. Soil respiration used to measure soil microbial activity was overall much higher in treatments with C compounds than without C in both non-sterile and semi-sterile soil. However, soil respiration was highest with cellulose in semi-sterile soil, especially in combination with P. aculeatum. Hence, for the second experiment with P sources (tricalcium phosphate (TCP) and sewage sludge ash) cellulose was used as a C source for P. aculeatum growth in all treatments. Main results showed that P. aculeatum in combination with cellulose soil amendment increased soil Pwep independent of soil sterilization and P source treatments. Soil resin P (Pres) and microbial P (Pmic), which represents stocks of potentially plant available P, were also affected from P. aculeatum inoculation. Increased soil Pres from TCP and sewage sludge ash was observed with P. aculeatum independent of soil type. On the other hand soil Pmic was higher after P. aculeatum inoculation only in semi-sterile soil. Population density of P. aculeatum measured with qPCR was maintained or increased in non-sterile and semi-sterile soil, respectively, compared to the original inoculum load of P. aculeatum. In conclusion, our results underline the importance of C source addition for P. aculeatum if used as a biofertilizer. For this, cellulose seems to be a promising option promoting P. aculeatum growth and P solubilization also in non-sterilized soil.


Assuntos
Solo , Talaromyces , Celulose , Esgotos , Microbiologia do Solo , Esterilização
2.
J Eukaryot Microbiol ; 58(4): 310-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21518080

RESUMO

Plasmodiophora brassicae is an obligate, biotrophic pathogen causing the club-root disease of crucifers. Despite its importance as a plant pathogen, little is known about P. brassicae at the molecular level as most of its life cycle takes place inside the plant host, and axenic culturing is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen-host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty ESTs were found of which 49% proved to be P. brassicae genes. Ten novel P. brassicae genes were identified, and the genomic sequences surrounding four of the ESTs were acquired using genome walking. Alignment of the ESTs and the genomic DNA sequences confirmed that P. brassicae genes are intron rich and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed in the infection of Arabidopsis plants, indicating that these genes play an important role in P. brassicae infection.


Assuntos
Brassica rapa/parasitologia , Genes de Protozoários , Doenças das Plantas/parasitologia , Plasmodioforídeos/genética , Arabidopsis/parasitologia , Sequência de Bases , Etiquetas de Sequências Expressas , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Alinhamento de Sequência , Análise de Sequência de DNA
3.
J Proteomics ; 75(3): 962-77, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22075166

RESUMO

Many carrots are discarded during post harvest cold storage due to development of fungal infections, caused by, e.g., Mycocentrospora acerina (liquorice rot). We compared the susceptibility of carrots grown under conventional and organic agricultural practices. In one year, organically cultivated carrots showed 3× to 7× more symptoms than conventionally cultivated, when studying naturally occurring disease at 4 and 6 months, respectively. On the other hand, we have developed a bioassay for infection studies of M. acerina on carrots and observed that organic roots were more susceptible after one month of storage than conventional ones, but no differences were apparent after four or six months storage. Levels of polyacetylenes (falcarinol, falcarindiol and falcarindiol-3-acetate) did not change, whereas the isocoumarin phytoalexin (6-methoxymellein) accumulated in infected tissue as well as in healthy tissue opposite the infection. The proteomes of carrot and M. acerina were characterized, the intensity of 33 plant protein spots was significantly changed in infected roots including up regulation of defence and stress response proteins but also a decrease of proteins involved in energy metabolism. This combined metabolic and proteomic study indicates that roots respond to fungal infection through altered metabolism: simultaneous induction of 6-methoxymellein and synthesis of defence related proteins.


Assuntos
Ascomicetos , Daucus carota/metabolismo , Isocumarinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Poli-Inos/metabolismo , Proteoma/metabolismo , Daucus carota/microbiologia , Agricultura Orgânica , Raízes de Plantas/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa