Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 107(4): 977-983, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835555

RESUMO

The Notch signaling pathway is required for reproductive success. This pathway activates its transcriptional effector, recombination signal binding protein for immunoglobulin kappa J (Rbpj), to induce transcription of its target genes. This signaling pathway is required for successful decidualization, implantation, and uterine repair following parturition. To identify the compartmental specific roles of the Notch signaling pathway in the establishment of pregnancy, we generated epithelial and decidual stromal cell specific knockouts of Rbpj utilizing lactoferrin iCre and Prl8A2 iCre, respectively. Both conditional knockout mouse models were fertile. The Rbpj epithelial knockout mice displayed 27% resorption sites at E15.5, but this did not significantly impact the number of live born pups compared with controls. In addition, the Rbpj epithelial knockout mice displayed increased estrogen signaling in their stromal compartment. Given that both mouse models exhibited fertility comparable to control animals, the epithelial and stromal specific nature of the iCre recombinases utilized, and previously published Rbpj total uterine knockout mouse models, we conclude that Notch effector Rbpj signaling is required at the initiation of pregnancy to support decidualization in stromal cells, but that Rbpj is not required in the epithelial compartment nor is it required for post-implantation pregnancy success.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Receptores Notch , Animais , Proteínas de Transporte/metabolismo , Estrogênios , Feminino , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Lactoferrina/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética , Transdução de Sinais/fisiologia , Células Estromais/metabolismo
2.
Biol Reprod ; 106(6): 1072-1082, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35134122

RESUMO

Sirtuin 1 (SIRT1) is a member of the sirtuin family that functions to deacetylate both histones and non-histone proteins. Previous studies have identified significant SIRT1 upregulation in eutopic endometrium from infertile women with endometriosis. However, SIRT1 function in the uterus has not been directly studied. Using immunochemistry analysis, we found SIRT1 to be most strongly expressed at GD4.5 and GD5.5 in decidualized cells and at GD7.5 in secondary decidual cells in mouse. To assess the role of SIRT1 in uterine function, we generated uterine Sirt1 conditional knockout mice (Pgrcre/+Sirt1f/f; Sirt1d/d). A 6-month fertility trial revealed that Sirt1d/d females were subfertile. Implantation site numbers were significantly decreased in Sirt1d/d mice compared with controls at GD5.5. Sirt1d/d implantation sites at GD4.5 could be divided into two groups, Group #1 with luminal closure and nonspecific COX2 expression compared with controls (14/20) and Group #2 with an open lumen and no COX2 (6/20). In Sirt1d/d Group #1, nuclear FOXO1 expression in luminal epithelial cells was significantly decreased. In Sirt1d/d Group #2, nuclear FOXO1 expression was almost completely absent, and there was strong PGR expression in epithelial cells. At GD5.5, stromal PGR and COX2 were significantly decreased in Sirt1d/d uterine in the areas surrounding the embryo compared with controls, indicating defective decidualization. An artificially induced decidualization test revealed that Sirt1d/d females showed defects in decidualization response. All together, these data suggest that SIRT1 is important for decidualization and contributes to preparing a receptive endometrium for successful implantation.


Assuntos
Infertilidade Feminina , Sirtuína 1 , Animais , Ciclo-Oxigenase 2/metabolismo , Decídua/metabolismo , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Estromais/metabolismo , Útero/metabolismo
3.
FASEB J ; 35(2): e21209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33222288

RESUMO

Though endometriosis and infertility are clearly associated, the pathophysiological mechanism remains unclear. Previous work has linked endometrial ARID1A loss to endometriosis-related endometrial non-receptivity. Here, we show in mice that ARID1A binds and regulates transcription of the Foxa2 gene required for endometrial gland function. Uterine-specific deletion of Arid1a compromises gland development and diminishes Foxa2 and Lif expression. Deletion of Arid1a with Ltf-iCre in the adult mouse endometrial epithelium preserves the gland development while still compromising the gland function. Mice lacking endometrial epithelial Arid1a are severely sub-fertile due to defects in implantation, decidualization, and endometrial receptivity from disruption of the LIF-STAT3-EGR1 pathway. FOXA2 is also reduced in the endometrium of women with endometriosis in correlation with diminished ARID1A, and both ARID1A and FOXA2 are reduced in nonhuman primates induced with endometriosis. Our findings describe a role for ARID1A in the endometrial epithelium supporting early pregnancy establishment through the maintenance of gland function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Animais , Proteínas de Ligação a DNA/genética , Feminino , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682747

RESUMO

A growing body of work suggests epigenetic dysregulation contributes to endometriosis pathophysiology and female infertility. The chromatin remodeling complex subunit AT-rich interaction domain 1A (ARID1A) must be properly expressed to maintain normal uterine function. Endometrial epithelial ARID1A is indispensable for pregnancy establishment in mice through regulation of endometrial gland function; however, ARID1A expression is decreased in infertile women with endometriosis. We hypothesized that ARID1A performs critical operations in the endometrial epithelium necessary for fertility besides maintaining gland function. To identify alterations in uterine gene expression resulting from loss of epithelial ARID1A, we performed RNA-sequencing analysis on pre-implantation uteri from LtfiCre/+Arid1af/f and control mice. Differential expression analysis identified 4181 differentially expressed genes enriched for immune-related ingenuity canonical pathways including agranulocyte adhesion and diapedesis and natural killer cell signaling. RT-qPCR confirmed an increase in pro-inflammatory cytokine and macrophage-related gene expression but a decrease in natural killer cell signaling. Immunostaining confirmed a uterus-specific increase in macrophage infiltration. Flow cytometry delineated an increase in inflammatory macrophages and a decrease in uterine dendritic cells in LtfiCre/+Arid1af/f uteri. These findings demonstrate a role for endometrial epithelial ARID1A in suppressing inflammation and maintaining uterine immune homeostasis, which are required for successful pregnancy and gynecological health.


Assuntos
Endometriose , Infertilidade Feminina , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Feminino , Homeostase , Humanos , Infertilidade Feminina/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Útero/metabolismo
5.
Biochem Biophys Res Commun ; 550: 151-157, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33706098

RESUMO

Endometriosis is a disorder in which endometrial cells normally limited to the lining of the uterus proliferate outside the uterine cavity and can cause pelvic pain and infertility. ARID1A levels are significantly reduced in the eutopic endometrium from women with endometriosis. Uterine specific Arid1a knock-out mice were infertile due to loss of epithelial progesterone receptor (PGR) signaling. However, the functional association of ARID1A and PGR in endometriosis has not been studied. We examined the expression patterns and co-localization of ARID1A and PGR in eutopic endometrium from women with and without endometriosis using immunostaining and Western blot analysis. ARID1A and PGR proteins co-localized in the epithelium during the proliferative and the early secretory phases. Our immunoprecipitation analysis and proximity ligation assay (PLA) revealed physical interaction between ARID1A and PGR-A but not PGR-B in the mouse and human endometrium. ARID1A levels positively correlated with PGR levels in the eutopic endometrium of women with endometriosis. Our results bring new perspectives on the molecular mechanisms involved in endometrial receptivity and progesterone resistance in endometriosis. The interrelationship between ARID1A and PGR may contribute to explaining the non-receptive endometrium in endometriosis-related infertility.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/deficiência , Endometriose/patologia , Endométrio/patologia , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Ligação Proteica , Receptores de Progesterona/deficiência , Fatores de Transcrição/deficiência
6.
Biochem Biophys Res Commun ; 572: 92-97, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358969

RESUMO

Brown adipose tissue (BAT) is an anti-obese and anti-diabetic tissue that stimulates energy expenditure in the form of adaptive thermogenesis through uncoupling protein 1 (UCP1). Mitogen-inducible gene-6 (Mig-6) is a negative regulator of epidermal growth factor receptor (EGFR) that interacts with many cellular partners and has multiple cellular functions. We have recently reported that Mig-6 is associated with diabetes and metabolic syndrome. However, its function in BAT is unknown. We generated a brown adipocyte-specific Mig-6 knock-in mouse (BKI) to examine the role of Mig-6 in BAT. Mig-6 BKI mice had improved glucose tolerance on a normal chow diet. Mig-6 BKI mice also revealed activated thermogenesis and the size of the BAT lipid droplets was reduced. Additionally, Mig-6 regulated cAMP-PKA signaling-induced UCP1 expression in brown adipocytes. Taken together, these results demonstrate that Mig-6 affects glucose tolerance and thermogenesis in BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Homeostase , Camundongos , Termogênese
7.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33693877

RESUMO

About 40% of women with infertility and 70% of women with pelvic pain suffer from endometriosis. The pregnancy rate in women undergoing IVF with low endometrial integrin αvß3 (LEI) expression is significantly lower compared to the women with high endometrial integrin αvß3 (HEI). Mid-secretory eutopic endometrial biopsies were obtained from healthy controls (C; n=3), and women with HEI (n=4) and LEI (n=4) and endometriosis. Changes in gene expression were assessed using human gene arrays and DNA methylation data were derived using 385 K Two-Array Promoter Arrays. Transcriptional analysis revealed that LEI and C groups clustered separately with 396 differentially expressed genes (DEGs) (P<0.01: 275 up and 121 down) demonstrating that transcriptional and epigenetic changes are distinct in the LEI eutopic endometrium compared to the C and HEI group. In contrast, HEI vs C and HEI vs LEI comparisons only identified 83 and 45 DEGs, respectively. The methylation promoter array identified 1304 differentially methylated regions in the LEI vs C comparison. The overlap of gene and methylation array data identified 14 epigenetically dysregulated genes and quantitative RT-PCR analysis validated the transcriptomic findings. The analysis also revealed that aryl hydrocarbon receptor (AHR) was hypomethylated and significantly overexpressed in LEI samples compared to C. Further analysis validated that AHR transcript and protein expression are significantly (P<0.05) increased in LEI women compared to C. The increase in AHR, together with the altered methylation status of the 14 additional genes, may provide a diagnostic tool to identify the subset of women who have endometriosis-associated infertility.


Assuntos
Metilação de DNA , Endometriose/genética , Endométrio/metabolismo , Infertilidade Feminina/etiologia , Integrina alfaVbeta3/biossíntese , Transcriptoma , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biópsia , Regulação para Baixo , Endometriose/complicações , Endometriose/metabolismo , Endométrio/patologia , Feminino , Humanos , Infertilidade Feminina/genética , Integrina alfaVbeta3/genética , Pessoa de Meia-Idade , Análise de Componente Principal , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 115(18): 4672-4677, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29588416

RESUMO

Programmed cell death 5 (PDCD5) has been associated with human cancers as a regulator of cell death; however, the role of PDCD5 in the endothelium has not been revealed. Thus, we investigated whether PDCD5 regulates protein kinase B (PKB/AKT)-endothelial nitric oxide synthase (eNOS)-dependent signal transduction in the endothelium and affects atherosclerosis. Endothelial-specific PDCD5 knockout mice showed significantly reduced vascular remodeling compared with wild-type (WT) mice after partial carotid ligation. WT PDCD5 competitively inhibited interaction between histone deacetylase 3 (HDAC3) and AKT, but PDCD5L6R, an HDAC3-binding-deficient mutant, did not. Knockdown of PDCD5 accelerated HDAC3-AKT interaction, AKT and eNOS phosphorylation, and nitric oxide (NO) production in human umbilical vein endothelial cells. Moreover, we found that serum PDCD5 levels reflect endothelial NO production and are correlated with diabetes mellitus, high-density lipoprotein cholesterol, and coronary calcium in human samples obtained from the cardiovascular high-risk cohort. Therefore, we conclude that PDCD5 is associated with endothelial dysfunction and may be a novel therapeutic target in atherosclerosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Vascular , Animais , Proteínas Reguladoras de Apoptose/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Endotélio Vascular/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética
9.
Biol Reprod ; 103(4): 760-768, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558878

RESUMO

The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Útero/metabolismo , Animais , Feminino , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Subunidade alfa2 de Receptor de Interleucina-13/genética , Camundongos , Camundongos Knockout , Coativador 1 de Receptor Nuclear/genética , Interferência de RNA , RNA Mensageiro , RNA Interferente Pequeno
10.
BMC Cancer ; 19(1): 810, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412816

RESUMO

BACKGROUND: Endometrial cancer is the most common gynecological cancer. G-protein coupled receptor 64 (GPR64) belongs to a family of adhesion GPCRs and plays an important role in male fertility. However, the function of GPR64 has not been studied in endometrial cancer. Our objective is to investigate the role of GPR64 in endometrial cancer. METHODS: We examined the levels of GPR64 in human endometrioid endometrial carcinoma by immunohistochemistry analysis. To determine a tumor suppressor role of GPR64 in endometrial cancer, we used a siRNA loss of function approach in human endometrial adenocarcinoma cell lines. RESULTS: GPR64 levels were remarkably lower in 10 of 21 (47.62%) of endometrial carcinoma samples compared to control. Depletion of GPR64 by siRNA transfection revealed an increase of colony formation ability, cell proliferation, cell migration, and invasion activity in Ishikawa and HEC1A cells. The expression of Connexin 43 (Cx43), a member of the large family of gap junction proteins, was reduced through activation of AMP-activated protein kinase (AMPK) in Ishikawa cells with GPR64-deficicy. CONCLUSIONS: These results suggest that GPR64 plays an important tumor suppressor role in endometrial cancer.


Assuntos
Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Conexina 43/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fosforilação , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética
11.
FASEB J ; 32(5): 2452-2466, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29242273

RESUMO

Unexplained recurrent pregnancy loss (uRPL) is associated with repeated embryo loss and endometrial repair with elevated endometrial expression of inflammatory cytokines, including IFN-γ. Notch signaling through its transcription factor recombination signal binding protein Jκ (RBPJ) regulates mechanisms including the immune response and repair after tissue injury. Initially, null mutation of RBPJ in the mouse uterus ( Pgrcre/+Rbpjf/f; Rbpj c-KO) results in subfertility, but we have found that these mice become infertile after pregnancy as a result of dysfunctional postpartum uterine repair, including delayed endometrial epithelial and myometrial regeneration. RNA sequencing of postpartum uterine repair sites revealed global up-regulation of inflammatory pathways, including IFN signaling. Consistent with elevated IFN-γ, macrophages were recruited and polarized toward an M1-cytotoxic phenotype, which is associated with preventing repair and promoting further tissue injury. Through embryo transfer experiments, we show that dysfunctional postpartum repair directly impairs future embryo implantation in Rbpj c-KO mice. Last, we clinically correlated our findings from the Rbpj c-KO mouse in women diagnosed with uRPL. Reduced RBPJ in women with uRPL was associated with increased levels of IFN-γ. The data, taken together, indicate that RBPJ regulates inflammation during endometrial repair, which is essential for future pregnancy potential, and its dysregulation may serve as an unidentified contributor to uRPL in women.-Strug, M. R., Su, R.-W., Kim, T. H., Mauriello, A., Ticconi, C., Lessey, B. A., Young, S. L., Lim, J. M., Jeong, J.-W., Fazleabas, A. T. RBPJ mediates uterine repair in the mouse and is reduced in women with recurrent pregnancy loss.


Assuntos
Aborto Habitual/metabolismo , Endométrio/fisiologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Miométrio/fisiologia , Regeneração , Aborto Habitual/genética , Aborto Habitual/patologia , Adulto , Animais , Endométrio/patologia , Feminino , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Interferon gama/genética , Interferon gama/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Miométrio/patologia , Período Pós-Parto/genética , Período Pós-Parto/metabolismo , Gravidez
12.
Proc Natl Acad Sci U S A ; 113(8): 2300-5, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858409

RESUMO

In mammalian reproduction, implantation is one of the most critical events. Failure of implantation and the subsequent decidualization contribute to more than 75% of pregnancy losses in women. Our laboratory has previously reported that inhibition of Notch signaling results in impaired decidualization in both women and a transgenic mouse model. In this study, we generated a Notch gain-of-function transgenic mouse by conditionally overexpressing the Notch1 intracellular domain (N1ICD) in the reproductive tract driven by a progesterone receptor (Pgr) -Cre. We show that the overexpression of N1ICD in the uterus results in complete infertility as a consequence of multiple developmental and physiological defects, including the absence of uterine glands and dysregulation of progesterone and estrogen signaling by a Recombination Signal Binding Protein Jκ-dependent signaling mechanism. We further show that the inhibition of progesterone signaling is caused by hypermethylation of its receptor Pgr by Notch1 overexpression through the transcription factor PU.1 and DNA methyltransferase 3b (Dnmt3b). We have generated a mouse model to study the consequence of increased Notch signaling in female reproduction and provide the first evidence, to our knowledge, that Notch signaling can regulate epigenetic modification of the Pgr.


Assuntos
Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Receptor Notch1/metabolismo , Receptores de Progesterona/metabolismo , Útero/metabolismo , Animais , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Estradiol/metabolismo , Feminino , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Infertilidade Feminina/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Progesterona/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Notch1/química , Receptor Notch1/genética , Receptores de Progesterona/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Regulação para Cima , Útero/patologia
13.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387263

RESUMO

In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.


Assuntos
Endométrio/metabolismo , Estrogênios/metabolismo , Progesterona/metabolismo , Transdução de Sinais , Animais , Endometriose/tratamento farmacológico , Endometriose/etiologia , Endometriose/metabolismo , Feminino , Hormônios/metabolismo , Hormônios/uso terapêutico , Humanos , Infertilidade Feminina/etiologia , Infertilidade Feminina/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Esteroides/metabolismo
14.
Biochem Biophys Res Commun ; 495(4): 2553-2558, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29289536

RESUMO

The ovarian steroid hormones, estrogen (E2) and progesterone (P4), are essential regulators of uterine functions necessary for development, embryo implantation, and normal pregnancy. ARID1A plays an important role in steroid hormone signaling in endometrial function and pregnancy. In previous studies, using high density DNA microarray analysis, we identified phosphatidylinositol-3-kinase interacting protein 1 (Pik3ip1) as one of the genes up-regulated by ARID1A. In the present study, we performed real-time qPCR and immunohistochemistry analysis to investigate the regulation of PIK3IP1 by ARID1A and determine expression patterns of PIK3IP1 in the uterus during early pregnancy. The expression of PIK3IP1 was strong at the uterine epithelial and stromal cells of the control mice. However, expression of PIK3IP1 was remarkably reduced in the Pgrcre/+Arid1af/f mice and progesterone receptor knock-out (PRKO) mice. During early pregnancy, PIK3IP1 expression was strong at day 2.5 of gestation (GD 2.5) and then slightly decreased at GD 3.5 at the epithelium and stroma. After implantation, PIK3IP1 expression was detected at the secondary decidualization zone. To determine the ovarian steroid hormone regulation of PIK3IP1, we examined the expression of PIK3IP1 in ovariectomized control, Pgrcre/+Arid1af/f, and PRKO mice treated with P4 or E2. P4 treatment increased the PIK3IP1 expression at the luminal and glandular epithelium of control mice. However, the PIK3IP1 induction was decreased in both the Pgrcre/+Arid1af/f and PRKO mice, compared to controls. Our results identified PIK3IP1 as a novel target of ARID1A and PGR in the murine uterus.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Nucleares/metabolismo , Prenhez/metabolismo , Receptores de Progesterona/metabolismo , Útero/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Gravidez , Distribuição Tecidual , Fatores de Transcrição
15.
PLoS Genet ; 11(9): e1005537, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26378916

RESUMO

AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Endometriose/genética , Feminino , Humanos , Camundongos , Camundongos Mutantes , Proteínas Nucleares/genética , Gravidez , Fatores de Transcrição/genética
16.
Asian-Australas J Anim Sci ; 31(8): 1176-1182, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29642667

RESUMO

OBJECTIVE: Progesterone receptor (PGR) and AT-rich interactive domain 1A (ARID1A) have important roles in the establishment and maintenance of pregnancy in the uterus. In present studies, we examined the expression of mitochondrial tumor suppressor 1 (MTUS1) in the murine uterus during early pregnancy as well as in response to ovarian steroid hormone treatment. METHODS: We performed quantitative reverse transcription polymerase chain reaction and immunohistochemistry analysis to investigate the regulation of MTUS1 by ARID1A and determined expression patterns of MTUS1 in the uterus during early pregnancy. RESULTS: The expression of MTUS1 was detected on day 0.5 of gestation (GD 0.5) and then gradually increased until GD 3.5 in the luminal and glandular epithelium. However, the expression of MTUS1 was significantly reduced in the uterine epithelial cells of Pgrcre/+Arid1af/f and Pgr knockout (PRKO) mice at GD 3.5. Furthermore, MTUS1 expression was remarkably induced after P4 treatment in the luminal and glandular epithelium of the wild-type mice. However, the induction of MTUS1 expression was not detected in uteri of Pgrcre/+Arid1af/f or PRKO mice treated with P4. CONCLUSION: These results suggest that MTUS1 is a novel target gene by ARID1A and PGR in the uterine epithelial cells.

17.
Adv Exp Med Biol ; 943: 243-259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27910070

RESUMO

Endometrial cancer is a frequently occurring gynecological disorder. Estrogen-dependent endometrioid carcinoma is the most common type of gynecological cancer. One of the major pathologic phenomena of endometrial cancer is the loss of estrogen (E2) and progesterone (P4) control over uterine epithelial cell proliferation. P4 antagonizes the growth-promoting properties of E2 in the uterus. P4 prevents the development of endometrial cancer associated with unopposed E2 by blocking E2 actions. Mitogen inducible gene 6 (Mig-6, Errfi1, RALT, or gene 33) is an immediate early response gene that can be induced by various mitogens and common chronic stress stimuli. Mig-6 has been identified as an important component of P4-mediated inhibition of E2 signaling in the uterus. Decreased expression of MIG-6 is observed in human endometrial carcinomas. Transgenic mice with Mig-6 ablation in the uterus develop endometrial hyperplasia and E2-dependent endometrial cancer. Thus, MIG-6 has a tumor suppressor function in endometrial tumorigenesis. The following discussion summarizes our current knowledge of Mig-6 mouse models and their role in understanding the molecular mechanisms of endometrial tumorigenesis and in the development of therapeutic approaches for endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Progesterona/metabolismo , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Modelos Animais de Doenças , Neoplasias do Endométrio/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Knockout , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , Receptores de Progesterona/genética , Transdução de Sinais/genética
18.
PLoS Genet ; 10(6): e1004451, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945252

RESUMO

Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets.


Assuntos
Aborto Espontâneo/genética , Receptores ErbB/genética , Fertilidade/genética , Complicações na Gravidez/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/genética , Decídua/metabolismo , Endometriose/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Gravidez , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Transdução de Sinais/genética , Proteína Quinase 1 Deficiente de Lisina WNK , Proteína Wnt4/genética
19.
Biochim Biophys Acta ; 1853(10 Pt A): 2722-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239118

RESUMO

Mitogen-inducible gene 6 (MIG6) is a tumor suppressor implicated in the development of human cancers; however, the regulatory mechanisms of MIG6 remain unknown. Here, using a yeast two-hybrid screen, we identified DnaJ homolog subfamily B member I (DNAJB1) as a novel MIG6-interacting protein. We found that DNAJB1 binds to and decreases MIG6 protein, but not mRNA, levels. DNAJB1 overexpression dosage-dependently decreased MIG6 protein levels. Conversely, DNAJB1 knockdown increased MIG6 protein levels. DNAJB1 destabilizes MIG6 by enhancing K48-linked ubiquitination of MIG6. However, knocking-down of DNAJB1 reduced the ubiquitination of MIG6. DNAJB1 positively regulates the epidermal growth factor receptors (EGFR) signaling pathway via destabilization of MIG6; however, DNAJB1 knockdown diminishes activation of EGFR signaling as well as elevation of MIG6. Importantly, the increased levels of MIG6 by DNAJB1 knockdown greatly enhanced the gefitinib sensitivity in A549 cells. Thus, our study provides a new molecular mechanism to regulate EGFR signaling through modulation of MIG6 by DNAJB1 as a negative regulator.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP40/genética , Humanos , Ligação Proteica , Proteínas Supressoras de Tumor/genética
20.
Biochim Biophys Acta ; 1853(5): 1060-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25603536

RESUMO

Programmed cell death 5 (PDCD5) plays a crucial role in TP53-mediated apoptosis, but the regulatory mechanism of PDCD5 itself during apoptosis remains obscure. We identified YY1-associated factor 2 (YAF2) as a novel PDCD5-interacting protein in a yeast two-hybrid screen for PDCD5-interacting proteins. We found that YY1-associated factor 2 (YAF2) binds to and increases PDCD5 stability by inhibiting the ubiquitin-dependent proteosomal degradation pathway. However, knocking-down of YAF2 diminishes the levels of PDCD5 protein but not the levels of PDCD5 mRNA. Upon genotoxic stress response, YAF2 promotes TP53 activation via association with PDCD5. Strikingly, YAF2 failed to promote TP53 activation in the deletion of PDCD5, whereas restoration of wild-type PDCD5WT efficiently reversed the ineffectiveness of YAF2 on TP53 activation. Conversely, PDCD5 efficiently overcame the knockdown effect of YAF2 on ET-induced TP53 activation. Finally, impaired apoptosis upon PDCD5 ablation was substantially rescued by restoration of PDCD5WT but not YAF2-interacting defective PDCD5E4D nor TP53-interacting defective PDCD5E16D mutant. Our findings uncovered an apoptotic signaling cascade linking YAF2, PDCD5, and TP53 during genotoxic stress responses.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Dano ao DNA , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Leupeptinas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica/efeitos dos fármacos , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa