Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(4): e31184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197464

RESUMO

Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.


Assuntos
Estresse do Retículo Endoplasmático , Interleucina-8 , Hepatopatia Gordurosa não Alcoólica , Obesidade , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Palmitatos/farmacologia , RNA Interferente Pequeno/metabolismo , Interleucina-8/farmacologia , Interleucina-8/uso terapêutico
2.
Biochem Biophys Res Commun ; 694: 149407, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38154209

RESUMO

Interleukin-38 (IL-38), a member of the IL-1 family, is known for its anti-inflammatory properties mediated through ligand signaling in various disease models. It plays a significant role in atherosclerosis development, forming a theoretical basis for therapeutic strategies. However, the direct effects of IL-38 on atherogenic responses in the vascular endothelium and monocytes remain unclear. In this investigation, IL-38 treatment reduced THP-1 monocyte adhesion to HUVECs, decreased the expression of vascular adhesion molecules, and mitigated inflammation in the presence of palmitate. IL-38 treatment upregulated SIRT6 expression and enhanced autophagy markers such as LC3 conversion and p62 degradation. The effects of IL-38 were nullified by siRNA-mediated suppression of SIRT6 or heme oxygenase-1 (HO-1) in HUVECs and palmitate-treated THP-1 cells. These findings reveal that IL-38 mitigates inflammation through the SIRT6/HO-1 pathway, offering a potential therapeutic approach for addressing obesity-related atherosclerosis.


Assuntos
Aterosclerose , Sirtuínas , Humanos , Aterosclerose/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Interleucinas , Obesidade/complicações , Palmitatos , Sirtuínas/genética , Sirtuínas/metabolismo
3.
Biochem Biophys Res Commun ; 703: 149671, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38367515

RESUMO

Interleukin-27 (IL-27) is a recently discovered cytokine that has been implicated in inflammatory and metabolic conditions, such as atherosclerosis and insulin resistance. However, the mechanisms by which IL-27 attenuates hepatic lipid accumulation in hyperlipidemic conditions and counteracts endoplasmic reticulum (ER) stress, a known risk factor for impaired hepatic lipid metabolism, have not been elucidated. This in vitro study was designed to examine the effect of IL-27 on hepatic lipid metabolism. The study included the evaluation of lipogenesis-associated proteins and ER stress markers by Western blotting, the determination of hepatic lipid accumulation by Oil Red O staining, and the examination of autophagosome formation by MDC staining. The results showed that IL-27 treatment reduced lipogenic lipid deposition and the expression of ER stress markers in cultured hepatocytes exposed to palmitate. Moreover, treatment with IL-27 suppressed CD36 expression and enhanced fatty acid oxidation in palmitate-treated hepatocytes. The effects of IL-27 on hyperlipidemic hepatocytes were attenuated when adenosine monophosphate-activated protein kinase (AMPK) or 3-methyladenine (3 MA) were inhibited by small interfering RNA (siRNA). These results suggest that IL-27 attenuates hepatic ER stress and fatty acid uptake and stimulates fatty acid oxidation via AMPK/autophagy signaling, thereby alleviating hepatic steatosis. In conclusion, this study identified IL-27 as a promising therapeutic target for nonalcoholic fatty liver disease (NAFLD).


Assuntos
Interleucina-27 , Hepatopatia Gordurosa não Alcoólica , Humanos , Interleucina-27/metabolismo , Interleucina-27/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Hepatócitos/metabolismo , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo
4.
Biochem Biophys Res Commun ; 691: 149293, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38016337

RESUMO

CTRP4, identified as an adipokine, has demonstrated notable anti-inflammatory and anti-obesity effects in various disease models. Consequently, our research sought to explore the impact of CTRP4 on inflammation and the interaction between endothelial cells and monocytes in hyperlipidemic conditions. Using Western blotting, we assessed the expression levels of various proteins in HUVECs and THP-1 monocytes. Our study findings indicate that treatment with CTRP4 effectively mitigated the attachment of THP-1 monocytes to HUVECs. Furthermore, it reduced the expression of adhesion molecules and inflammation indicators in experimental cells exposed to hyperlipidemic conditions. Notably, CTRP4 treatment led to an increase in SIRT6 expression and the nuclear translocation of Nrf2. Interestingly, when SIRT6 or Nrf2 was silenced using siRNA, the positive effects of CTRP4 in HUVECs and THP-1 cells were nullified. Our results suggest that CTRP4 exhibits anti-inflammatory properties, thereby improving the interaction between endothelial cells and monocytes through the SIRT6/Nrf2-dependent pathway. This study provides insights into CTRP4 as a potential therapeutic target for mitigating obesity-related atherosclerosis.


Assuntos
Monócitos , Sirtuínas , Humanos , Monócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adesão Celular , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Sirtuínas/metabolismo
5.
Biochem Biophys Res Commun ; 722: 150158, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795455

RESUMO

The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.


Assuntos
Hiperlipidemias , Resistência à Insulina , Estresse Oxidativo , Fator de Transcrição STAT3 , Transdução de Sinais , Sirtuína 1 , Animais , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator de Transcrição STAT3/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamento farmacológico , PPAR delta/metabolismo , PPAR delta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Interleucinas/metabolismo , Interleucinas/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Interleucina-1/metabolismo , Interleucina-1/genética
6.
J Transl Med ; 22(1): 38, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195611

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is an irreversible eye disease that can cause blurred vision. Regular exercise has been suggested as a therapeutic strategy for treating AMD, but how exercise improves AMD is not yet understood. This study investigated the protective effects of developmental endothelial locus-1 (DEL-1), a myokine upregulated during exercise, on endoplasmic reticulum (ER) stress-induced injury in retinal pigment epithelial cells. METHODS: We evaluated the levels of AMPK phosphorylation, autophagy markers, and ER stress markers in DEL-1-treated human retinal pigment epithelial cells (hRPE) using Western blotting. We also performed cell viability, caspase 3 activity assays, and autophagosome staining. RESULTS: Our findings showed that treatment with recombinant DEL-1 dose-dependently reduced the impairment of cell viability and caspase 3 activity in tunicamycin-treated hRPE cells. DEL-1 treatment also alleviated tunicamycin-induced ER stress markers and VEGF expression. Moreover, AMPK phosphorylation and autophagy markers were increased in hRPE cells in the presence of DEL-1. However, the effects of DEL-1 on ER stress, VEGF expression, and apoptosis in tunicamycin-treated hRPE cells were reduced by AMPK siRNA or 3-methyladenine (3-MA), an autophagy inhibitor. CONCLUSIONS: Our study suggests that DEL-1, a myokine, may have potential as a treatment strategy for AMD by attenuating ER stress-induced injury in retinal pigment epithelial cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Degeneração Macular , Humanos , Caspase 3 , Tunicamicina/farmacologia , Fator A de Crescimento do Endotélio Vascular , Degeneração Macular/terapia , Miocinas , Células Epiteliais , Pigmentos da Retina
7.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38372062

RESUMO

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células HeLa , Inativação Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA Mensageiro/genética
8.
J Cell Physiol ; 238(5): 966-975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890751

RESUMO

Gremlin-1 (GR1) is a novel adipokine that is highly expressed in human adipocytes and has been shown to inhibit the BMP2/4-TGFb signaling pathway. It has an effect on insulin sensitivity. Elevated levels of Gremlin have been shown to lead to insulin resistance in skeletal muscle, adipocytes, and hepatocytes. In this study, we investigated the effect of GR1 on hepatic lipid metabolism under hyperlipidemic conditions and explored the molecular mechanisms associated with GR1 by in vitro and in vivo studies. We found that palmitate increased GR1 expression in visceral adipocytes. Recombinant GR1 increased lipid accumulation, lipogenesis, and ER stress markers in cultured primary hepatocytes. Treatment with GR1 increased EGFR expression and mTOR phosphorylation and reduced autophagy markers. EGFR or rapamycin siRNA reduced the effects of GR1 on lipogenic lipid deposition and ER stress in cultured hepatocytes. Administration of GR1 via the tail vein induced lipogenic proteins and ER stress while suppressing autophagy in the livers of experimental mice. Suppression of GR1 by in vivo transfection reduced the effects of a high-fat diet on hepatic lipid metabolism, ER stress, and autophagy in mice. These results suggest that the adipokine GR1 promotes hepatic ER stress due to the impairment of autophagy, ultimately causing hepatic steatosis in the obese state. The current study demonstrated that targeting GR1 may be a potential therapeutic approach for treating metabolic diseases, including metabolic-associated fatty liver disease (MAFLD).


Assuntos
Adipocinas , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Autofagia , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Receptores ErbB/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/farmacologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/genética , Regulação para Cima
9.
Biochem Biophys Res Commun ; 642: 154-161, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580826

RESUMO

The physicochemical properties of biomaterials influence cell adhesion, shape, and polarization of macrophages. In this study, we aimed to evaluate the polarization of macrophages in terms of the regulation of cell adhesion and how synthetic mimics for heparin and poly(sodium-4-styrenesulfonate) can regulate macrophage polarization by modulating cell shape, focal adhesion, cell traction force, and intracellular tension. Our initial findings showed that macrophages cultured with heparin-mimicking polymer-based hydrogel matrix showed reduced expression of cell adhesion markers such as integrins, vinculin, RhoA, and ROCK1/2 and reduced cell shape, elongation, cell-matrix traction force, and intracellular tension. Furthermore, we observed a significant decrease in cell adhesion in cells cultured on the hydrogel, resulting in the promotion of M1 polarization. These findings offer insights into the important roles of cell-matrix interactions in macrophage polarization and offer a platform for heparin-mimicking polymer-based hydrogel matrices to induce M1 polarization by inducing cell adhesion without classical activators.


Assuntos
Hidrogéis , Polímeros , Adesão Celular , Heparina/farmacologia , Heparina/metabolismo , Macrófagos/metabolismo , Polímeros/farmacologia , Polímeros/metabolismo , Materiais Biomiméticos
10.
Biochem Biophys Res Commun ; 642: 113-117, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566562

RESUMO

Musclin (MUS), an exercise-responsive myokine, has been documented to attenuate inflammation and enhance physical endurance. However, the effects of MUS on differentiation and related molecular mechanisms in adipocytes have not yet been studied. In this study, we found that treatment with MUS attenuated lipid accumulation in fully differentiated 3T3-L1 cells. Furthermore, MUS treatment enhanced lipolysis assessed by glycerol release, and caused apoptosis, whereas it reduced the expression of lipogenic proteins, such as PPARγ and processed SREBP1. Treatment with MUS augmented phosphorylated PKA expression, whereas suppressed p38 phosphorylation in 3T3-L1 adipocytes. H89, a selective PKA inhibitor reduced the effects of MUS on lipogenic lipid accumulation as well as lipolysis except for apoptosis. These results suggest that MUS promotes lipolysis and suppresses lipogenesis through a PKA/p38-dependent pathway, thereby ameliorating lipid deposition in cultured adipocytes. The current study offers the potential of MUS as a therapeutic approach for treating obesity with few side effects.


Assuntos
Lipogênese , Lipólise , Animais , Camundongos , Células 3T3-L1 , Regulação para Cima , Adipócitos/metabolismo , Lipídeos/farmacologia , Adipogenia
11.
Biochem Biophys Res Commun ; 682: 104-110, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37806247

RESUMO

Hyperglycemia, characterized by high blood glucose levels resulting from pancreatic beta cell dysfunction or impaired insulin signaling, is a contributing factor in the development of diabetic nephropathy. This study aimed to investigate the effects of C1q/TNF-related protein 4 (CTRP4), known for its anti-obesity and anti-inflammatory properties in various disease models, on podocyte apoptosis and endoplasmic reticulum (ER) stress in the presence of elevated glucose levels. The expression levels of various proteins in podocytes and adipocytes were evaluated by Western blotting. Autophagosomes in podocytes were stained by MDC. Chromatin condensation in podocytes was examined by Hoechst staining. The research revealed increased expression of CTRP4 in 3T3-L1 adipocytes and CIHP-1 podocytes exposed to high glucose (HG) conditions. Treatment with CTRP4 effectively mitigated HG-induced apoptosis and ER stress and normalized epithelial-to-mesenchymal transition (EMT) markers in CIHP-1 cells. Furthermore, elevated levels of AMPK phosphorylation and autophagy were observed in CIHP-1 cells treated with CTRP4. Silencing of AMPK or the use of 3-methyl adenine (3 MA) reduced the impacts of CTRP4 on apoptosis, EMT markers and ER stress in CIHP-1 cells. In conclusion, these findings suggest that CTRP4 alleviates ER stress in podocytes under hyperglycemic conditions, leading to the suppression of apoptosis and the restoration of EMT through AMPK/autophagy-mediated signaling. These insights provide valuable information for the development of therapeutic strategies for diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , Podócitos , Humanos , Podócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Apoptose , Autofagia , Glucose/farmacologia , Glucose/metabolismo
12.
Biochem Biophys Res Commun ; 648: 59-65, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36736092

RESUMO

Oroxylin-A (OA) is an O-methylated flavone that has been demonstrated to have anti-inflammatory properties in various disease models. However, the roles of OA in hepatic lipid metabolism and the specific molecular mechanisms by which it exerts these effects are not yet fully understood. In the current study, we aimed to investigate the effects of OA on hepatic lipid deposition and apoptosis, which play a pivotal role in the development of nonalcoholic fatty liver disease (NAFLD) in obesity in vitro models. We found that treatment with OA attenuated lipid accumulation, the expression of lipogenesis-associated proteins and apoptosis in palmitate-treated primary mouse hepatocytes. OA treatment suppressed phosphorylated NFκB and IκB expression in as well as TNFα and MCP-1 release from hepatocytes treated with palmitate. Treatment of hepatocytes with OA augmented AMPK phosphorylation and FGF21 expression. siRNA of AMPK or FGF21 abolished the effects of OA on inflammation as well as lipid accumulation and apoptosis in hepatocytes under palmitate treatment conditions. In conclusion, OA improves inflammation through the AMPK/FGF21 pathway, thereby attenuating lipid accumulation and apoptosis in hepatocytes. This study may help identify new targets for developing treatments for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
13.
Biochem Biophys Res Commun ; 658: 62-68, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37023616

RESUMO

Musclin, an exercise-responsive myokine, has the ability to attenuate inflammation, oxidative stress, and apoptosis in cardiomyocytes under pathogenic conditions. While the potential benefits of musclin in the cardiovascular system have been well documented, its effects on hepatic endoplasmic reticulum (ER) stress and lipid metabolism are not fully understood. The present study showed that musclin treatment reduced lipid accumulation and lipogenic protein expression in primary hepatocytes exposed to palmitate. Palmitate treatment led to an increase in markers of ER stress, which was reversed by musclin treatment. Musclin treatment increased SIRT7 expression and markers of autophagy in a dose-dependent manner. Small interfering (si) RNA of SIRT7 or 3-methyladenine (3 MA) reduced the effects of musclin on lipogenic lipid deposition in hepatocytes under hyperlipidemic conditions. These findings suggest that musclin can suppress palmitate-induced ER stress by upregulating SIRT7 and autophagy signaling, thereby alleviating lipid accumulation in primary hepatocytes. The current study provides a potential therapeutic strategy for the treatment of liver diseases characterized by lipid accumulation and ER stress, such as nonalcoholic fatty liver disease (NAFLD).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Hepatócitos/metabolismo , Fígado/metabolismo , Estresse do Retículo Endoplasmático , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Autofagia , Palmitatos/farmacologia , Palmitatos/metabolismo , Sirtuínas/metabolismo
14.
Biomacromolecules ; 24(3): 1209-1219, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802451

RESUMO

Simultaneous sustained release of cancer vaccines and immunomodulators may effectively trigger durable immune responses and avoid multiple administrations. Here, we established a biodegradable microneedle (bMN) based on a biodegradable copolymer matrix made of polyethylene glycol (PEG) and poly(sulfamethazine ester urethane) (PSMEU). This bMN was applied to the skin and slowly degraded in the epidermis/dermis layers. Then, the complexes composed of a positively charged polymer (DA3), cancer DNA vaccine (pOVA), and toll-like receptor 3 agonist poly(I/C) were synchronously released from the matrix in a pain-free manner. The whole microneedle patch was fabricated with two layers. The basal layer was formed using polyvinyl pyrrolidone/polyvinyl alcohol that could be rapidly dissolved upon applying the microneedle patch to the skin, whereas the microneedle layer was formed by complexes encapsulating biodegradable PEG-PSMEU, which was stuck at the injection site for sustained release of therapeutic agents. According to the results, 10 days is the time for the complexes to be completely released and express specific antigens in antigen-presenting cells in vitro and in vivo. It is noteworthy that this system could successfully elicit cancer-specific humoral immune responses and inhibit metastatic tumors in the lungs after a single shot of immunization.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Preparações de Ação Retardada , Pele , Adjuvantes Imunológicos , Polímeros , Polietilenoglicóis , Agulhas
15.
Cell ; 134(4): 577-86, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18691745

RESUMO

Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.


Assuntos
Infecções por HIV/genética , Infecções por HIV/terapia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos CD7/metabolismo , Modelos Animais de Doenças , Expressão Gênica , HIV-1/genética , HIV-1/metabolismo , Humanos , Fragmentos de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Viral/metabolismo
16.
Drug Chem Toxicol ; 46(2): 281-296, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35707918

RESUMO

It has been recognized that serotonergic blocker showed serious side effects, and that ginsenoside modulated serotonergic system with the safety. However, the effects of ginsenoside on serotonergic impairments remain to be clarified. Thus, we investigated ginsenoside Re (GRe), a major bioactive component in the mountain-cultivated ginseng on (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT), a 5-HT1A receptor agonist. In the present study, we observed that the treatment with GRe resulted in significant inhibition of protein kinase C δ (PKCδ) phosphorylation induced by the 5-HT1A receptor agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT) in the hypothalamus of the wild-type (WT) mice. The inhibition of GRe was comparable with that of the PKCδ inhibitor rottlerin or the 5-HT1A receptor antagonist WAY100635 (WAY). 8-OH-DPAT-induced significant reduction in nuclear factor erythroid-2-related factor 2 (Nrf2)-related system (i.e., Nrf2 DNA binding activity, γ-glutamylcysteine ligase modifier (GCLm) and γ-glutamylcysteine ligase catalytic (GCLc) mRNA expression, and glutathione (GSH)/oxidized glutathione (GSSG) ratio) was significantly attenuated by GRe, rottlerin, or WAY in WT mice. However, PKCδ gene knockout significantly protected the Nrf2-dependent system from 8-OH-DPAT insult in mice. Increases in 5-hydroxytryptophan (5-HT) turnover rate, overall serotonergic behavioral score, and hypothermia induced by 8-OH-DPAT were significantly attenuated by GRe, rottlerin, or WAY in WT mice. Consistently, PKCδ gene knockout significantly attenuated these parameters in mice. However, GRe or WAY did not provide any additional positive effects on the serotonergic protective potential mediated by PKCδ gene knockout in mice. Therefore, our results suggest that PKCδ is an important mediator for GRe-mediated protective activity against serotonergic impairments/oxidative burden caused by the 5-HT1A receptor.


Assuntos
Ginsenosídeos , Camundongos , Animais , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Ginsenosídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 5-HT1A de Serotonina/genética , Glutationa , Dissulfeto de Glutationa , Antagonistas da Serotonina , Ligases
17.
J Cell Physiol ; 237(11): 4226-4237, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087347

RESUMO

Recently, sclerostin (SCL), a circulating glycoprotein, was proposed to be a novel myokine involved in developing metabolic disorders. The association between SCL levels and insulin resistance in skeletal muscle, liver, and adipose tissue was studied in individuals with aggravated glucose tolerance. Thus, we hypothesized that elevated circulating SCL might affect skeletal muscle insulin signaling and hepatic lipid metabolism, and aimed to investigate the effects of SCL on skeletal muscle insulin resistance and hepatic steatosis in obesity using in vitro and in vivo experimental models under hyperlipidemic conditions. In the current study, we found elevated SCL messenger RNA expression levels in myocytes in obese patients. In addition to a higher blood level, SCL was expressed at an elevated level in the skeletal muscle of mice fed a high-fat diet (HFD). Higher SCL release levels and expression were also noticed in palmitate-treated C2C12 myocytes. SCL suppression by in vivo transfection improves skeletal muscle insulin resistance and hepatic steatosis in HFD-fed mice. The treatment of C2C12 myocytes with recombinant SCL aggravated insulin signaling. Furthermore, treatment with SCL augmented lipogenic lipid deposition in human primary hepatocytes. Treatment with SCL upregulated mammalian target of rapamycin (mTOR) phosphorylation and suppressed autophagy markers, thereby causing endoplasmic reticulum (ER) stress. 4-Phenylbutyric acid, a pharmacological ER stress inhibitor, abolished the effects of SCL on insulin signaling in C2C12 myocytes and lipid accumulation in primary hepatocytes. In conclusion, SCL promotes skeletal muscle insulin resistance and hepatic steatosis by upregulating ER stress via the mTOR/autophagy-mediated pathway. The present study suggests that antagonizing SCL might be a novel therapeutic strategy for simultaneously managing insulin resistance and hepatic steatosis in obesity.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Humanos , Camundongos , Animais , Regulação para Cima , Insulina , Serina-Treonina Quinases TOR , Estresse do Retículo Endoplasmático , Autofagia , Músculo Esquelético , Dieta Hiperlipídica/efeitos adversos , Obesidade , Lipídeos , Camundongos Endogâmicos C57BL , Mamíferos
18.
Biochem Biophys Res Commun ; 603: 109-115, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35279461

RESUMO

α-ketoisocaproic acid (AKA), a metabolite of l-leucine, is one of the branched-chain amino acids (BCAAs) involved in energy metabolism. However, the effects of AKA on lipid metabolism, insulin signaling, and related mechanisms in preadipocytes have not been reported. Herein, we investigated the impacts of AKA on lipid accumulation in 3T3-L1 murine preadipocytes. Treatment with AKA for 4 days enhanced lipid accumulation and expression of lipogenic proteins, such as cleaved sterol-regulatory element-binding proteins (SREBP1) and stearoyl-CoA desaturase-1 (SCD1) in 3T3-L1 cells. Increased endoplasmic reticulum (ER) stress markers, such as phosphorylation of eukaryotic initiation factor 2 (eIF2) and CHOP, were observed in the presence of AKA. AKA treatment increased mTOR phosphorylation and reducing autophagy markers, such as LC3 conversion and degradation of p62. Treatment with rapamycin, an mTOR inhibitor, reduced the effects of AKA on ER stress and lipogenesis in 3T3-L1 preadipocytes. The present study demonstrates that AKA increases ER stress by impairing mTOR/autophagy signaling, thus promoting lipid accumulation and insulin resistance in preadipocytes. In particular, if AKA is taken together with substances that can suppress ER stress, more effective skeletal muscle gain will be possible.


Assuntos
Resistência à Insulina , Animais , Autofagia , Estresse do Retículo Endoplasmático , Cetoácidos , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Camundongos , Serina-Treonina Quinases TOR/metabolismo
19.
Biochem Biophys Res Commun ; 608: 142-148, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35398611

RESUMO

Abietic acid (AA), the main component of pine resin that has been traditionally used as Asian medicine, has been reported to demonstrate anti-inflammatory activities. Despite this, little is known about the effects of AA on hepatic endoplasmic reticulum (ER) stress and lipid metabolism. This study investigated the impacts of AA on ER stress and steatosis in in vitro obesity models. We found that Treatment with AA reduced lipid deposition and lipogenesis-related proteins expression in human primary hepatocytes. Augmented expression of ER stress markers (phospho-eukaryotic initiation factor-2α (eIF2α) and C/EBP homologous protein (CHOP)) in palmitate-treated hepatocytes were reversed by AA treatment. Further, AA treatment increased the expression of phospho-AMPK and oxygen-regulated protein 150 (ORP150) in hepatocytes. siRNA-associated knockdown of AMPK or ORP150 expression reduced the effects of AA on not only hepatic ER stress but also lipogenesis and apoptosis. These results denote that AA attenuates lipid accumulation in hepatocytes in the presence of palmitate through the suppression of ER stress by AMPK/ORP150 signaling. AA could be a potential candidate for treating non-alcoholic fatty liver disease.


Assuntos
Proteínas Quinases Ativadas por AMP , Abietanos , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Hepatócitos , Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxigênio/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia
20.
Small ; 18(15): e2200060, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229462

RESUMO

Macrophages (Mφs) are characterized by remarkable plasticity, an essential component of chronic inflammation. Thus, an appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) Mφs during wound healing is vital to promoting resolution of acute inflammation and enhancing tissue repair. Herein, exosomes derived from M2-Mφs (M2-Exos), which contain putative key regulators driving Mφ polarization, are used as local microenvironmental cues to induce reprogramming of M1-Mφs toward M2-Mφs for effective wound management. As an injectable controlled release depot for exosomes, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels (Exogels) are designed and employed for encapsulating M2-Exos to maximize their therapeutic effects in cutaneous wound healing. The degradation time of the hydrogels is adjustable from 6 days or up to 27 days by controlling the crosslinking density and tightness. The localization of M2-Exos leads to a successful local transition from M1-Mφs to M2-Mφs within the lesion for more than 6 days, followed by enhanced therapeutic effects including rapid wound closure and increased healing quality in an animal model for cutaneous wound healing. Collectively, the hydrolytically degradable PEG hydrogel-based exosome delivery system may serve as a potential tool in regulating local polarization state of Mφs, which is crucial for tissue homeostasis and wound repair.


Assuntos
Exossomos , MicroRNAs , Animais , Materiais Biocompatíveis/metabolismo , Preparações de Ação Retardada , Exossomos/metabolismo , Hidrogéis , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa