RESUMO
Suicide is a significant public health concern with complex etiology. Although the genetic component of suicide is well established, the scope of gene networks and biological mechanisms underlying suicide has yet to be defined. Previously, we reported genome-wide evidence that neurexin 1 (NRXN1), a key synapse organizing molecule, is associated with familial suicide risk. Here we present new evidence for two non-synonymous variants (rs78540316; P469S and rs199784139; H885Y) associated with increased familial risk of suicide death. We tested the impact of these variants on binding interactions with known partners and assessed functionality in a hemi-synapse formation assay. Although the formation of hemi-synapses was not altered with the P469S variant relative to wild-type, both variants increased binding to the postsynaptic binding partner, leucine-rich repeat transmembrane neuronal 2 (LRRTM2) in vitro. Our findings indicate that variants in NRXN1 and related synaptic genes warrant further study as risk factors for suicide death.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais , Moléculas de Adesão de Célula Nervosa/genética , Suicídio , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Ligação Proteica/fisiologia , Fatores de Risco , Sinapses/metabolismoRESUMO
Suicide is the 10th leading cause of death in the United States. Although environment has undeniable impact, evidence suggests that genetic factors play a significant role in completed suicide. We linked a resource of ~ 4500 DNA samples from completed suicides obtained from the Utah Medical Examiner to genealogical records and medical records data available on over eight million individuals. This linking has resulted in the identification of high-risk extended families (7-9 generations) with significant familial risk of completed suicide. Familial aggregation across distant relatives minimizes effects of shared environment, provides more genetically homogeneous risk groups, and magnifies genetic risks through familial repetition. We analyzed Illumina PsychArray genotypes from suicide cases in 43 high-risk families, identifying 30 distinct shared genomic segments with genome-wide evidence (p = 2.02E-07-1.30E-18) of segregation with completed suicide. The 207 genes implicated by the shared regions provide a focused set of genes for further study; 18 have been previously associated with suicide risk. Although PsychArray variants do not represent exhaustive variation within the 207 genes, we investigated these for specific segregation within the high-risk families, and for association of variants with predicted functional impact in ~ 1300 additional Utah suicides unrelated to the discovery families. None of the limited PsychArray variants explained the high-risk family segregation; sequencing of these regions will be needed to discover segregating risk variants, which may be rarer or regulatory. However, additional association tests yielded four significant PsychArray variants (SP110, rs181058279; AGBL2, rs76215382; SUCLA2, rs121908538; APH1B, rs745918508), raising the likelihood that these genes confer risk of completed suicide.
Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Suicídio Consumado , Adulto , Feminino , Genótipo , Humanos , Masculino , UtahRESUMO
Identification of genetic factors leading to increased risk of suicide death is critical to combat rising suicide rates, however, only a fraction of the genetic variation influencing risk has been accounted for. To address this limitation, we conducted the first comprehensive analysis of rare genetic variation in suicide death leveraging the largest suicide death biobank, the Utah Suicide Genetic Risk Study (USGRS). We conducted a single-variant association analysis of rare (minor allele frequency <1%) putatively functional single-nucleotide polymorphisms (SNPs) present on the Illumina PsychArray genotyping array in 2,672 USGRS suicide deaths of non-Finnish European (NFE) ancestry and 51,583 NFE controls from the Genome Aggregation Database. Secondary analyses used an independent control sample of 21,324 NFE controls from the Psychiatric Genomics Consortium. Five novel, high-impact, rare SNPs were identified with significant associations with suicide death (SNAPC1, rs75418419; TNKS1BP1, rs143883793; ADGRF5, rs149197213; PER1, rs145053802; and ESS2, rs62223875). 119 suicide decedents carried these high-impact SNPs. Both PER1 and SNAPC1 have other supporting gene-level evidence of suicide risk, and psychiatric associations exist for PER1 (bipolar disorder, schizophrenia), and for TNKS1BP1 and ESS2 (schizophrenia). Three of the genes (PER1, TNKS1BP1, and ADGRF5), together with additional genes implicated by genome-wide association studies on suicidal behavior, showed significant enrichment in immune system, homeostatic and signal transduction processes. No specific diagnostic phenotypes were associated with the subset of suicide deaths with the identified rare variants. These findings suggest an important role for rare variants in suicide risk and implicate genes and gene pathways for targeted replication.
Assuntos
Predisposição Genética para Doença , Suicídio , Estudo de Associação Genômica Ampla , Humanos , Proteínas Nucleares/genética , Proteínas Circadianas Period/genética , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Suicide is a manner of death resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. METHODS: We have identified the hippocampal tissue transcriptomes, gene ontology, cell type proportions, and dendritic spine morphology in controls (n = 28) and suicide decedents (n = 22). In addition, the transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons were also investigated in controls (n = 2) and suicide decedents (n = 2). RESULTS: The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in hippocampal tissue of suicide decedents. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide decedents. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide decedents. In addition, suicide decedents had increased dendric spine density in the hippocampus, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide decedents. CONCLUSIONS: Our findings will provide new insights into the hippocampal neuropathology of suicide.
Assuntos
Espinhas Dendríticas , Hipocampo , Suicídio , Transcriptoma , Humanos , Hipocampo/patologia , Masculino , Espinhas Dendríticas/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neurônios/patologia , Células-Tronco Neurais/patologia , Células-Tronco Pluripotentes Induzidas , IdosoRESUMO
Suicide is a condition resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. Here, we have identified the hippocampal transcriptomes, gene ontology, cell type proportions, dendritic spine morphology, and transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons in postmortem brain tissue from suicide deaths. The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in tissue from suicide deaths. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide deaths. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide deaths. In addition, suicide deaths had increased dendric spine density, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide deaths. The suicide-associated differentially expressed genes in NPCs were RELN, CRH, EMX2, OXTR, PARM1 and IFITM2 which overlapped with previously published results. The previously-known suicide-associated differentially expressed genes in differentiated neurons were COL1A1, THBS1, IFITM2, AQP1, and NLRP2. Together, these findings would help better understand the hippocampal neurobiology of suicide for identifying therapeutic targets to prevent suicide.
RESUMO
OBJECTIVE: Death by suicide is a highly preventable yet growing worldwide health crisis. To date, there has been a lack of adequately powered genomic studies of suicide, with no sizable suicide death cohorts available for analysis. To address this limitation, the authors conducted the first comprehensive genomic analysis of suicide death using previously unpublished genotype data from a large population-ascertained cohort. METHODS: The analysis sample comprised 3,413 population-ascertained case subjects of European ancestry and 14,810 ancestrally matched control subjects. Analytical methods included principal component analysis for ancestral matching and adjusting for population stratification, linear mixed model genome-wide association testing (conditional on genetic-relatedness matrix), gene and gene set-enrichment testing, and polygenic score analyses, as well as single-nucleotide polymorphism (SNP) heritability and genetic correlation estimation using linkage disequilibrium score regression. RESULTS: Genome-wide association analysis identified two genome-wide significant loci (involving six SNPs: rs34399104, rs35518298, rs34053895, rs66828456, rs35502061, and rs35256367). Gene-based analyses implicated 22 genes on chromosomes 13, 15, 16, 17, and 19 (q<0.05). Suicide death heritability was estimated at an h2SNP value of 0.25 (SE=0.04) and a value of 0.16 (SE=0.02) when converted to a liability scale. Notably, suicide polygenic scores were significantly predictive across training and test sets. Polygenic scores for several other psychiatric disorders and psychological traits were also predictive, particularly scores for behavioral disinhibition and major depressive disorder. CONCLUSIONS: Multiple genome-wide significant loci and genes were identified and polygenic score prediction of suicide death case-control status was demonstrated, adjusting for ancestry, in independent training and test sets. Additionally, the suicide death sample was found to have increased genetic risk for behavioral disinhibition, major depressive disorder, depressive symptoms, autism spectrum disorder, psychosis, and alcohol use disorder compared with the control sample.