Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diabetologia ; 64(9): 2052-2060, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34272582

RESUMO

AIMS/HYPOTHESIS: It is important to differentiate the two major phenotypes of adult-onset diabetes, autoimmune type 1 diabetes and non-autoimmune type 2 diabetes, especially as type 1 diabetes presents in adulthood. Serum GAD65 autoantibodies (GADA) are the most sensitive biomarker for adult-onset autoimmune type 1 diabetes, but the clinical value of GADA by current standard radiobinding assays (RBA) remains questionable. The present study focused on the clinical utility of GADA differentiated by a new electrochemiluminescence (ECL) assay in patients with adult-onset diabetes. METHODS: Two cohorts were analysed including 771 diabetic participants, 30-70 years old, from the Action LADA study (n = 6156), and 2063 diabetic participants, 20-45 years old, from the Diabetes in Young Adults (DiYA) study. Clinical characteristics of participants, including requirement of early insulin treatment, BMI and development of multiple islet autoantibodies, were analysed according to the status of RBA-GADA and ECL-GADA, respectively, and compared between these two assays. RESULTS: GADA was the most prevalent and predominant autoantibody, >90% in both cohorts. GADA positivity by either RBA or ECL assay significantly discriminated clinical type 1 from type 2 diabetes. However, in both cohorts, participants with ECL-GADA positivity were more likely to require early insulin treatment, have multiple islet autoantibodies, and be less overweight (for all p < 0.0001). However, clinical phenotype, age at diagnosis and BMI independently improved positive predictive value (PPV) for the requirement of insulin treatment, even augmenting ECL-GADA. Participants with GADA detectable by RBA, but not confirmed by ECL, had a phenotype more similar to type 2 diabetes. These RBA-GADA positive individuals had lower affinity GADA compared with participants in which GADA was confirmed by ECL assay. CONCLUSIONS/INTERPRETATION: Detection of GADA by ECL assay, given technical advantages over RBA-GADA, identified adult-onset diabetes patients at higher risk of requiring early insulin treatment, as did clinical phenotype, together allowing for more accurate clinical diagnosis and management.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adulto , Autoanticorpos , Diabetes Mellitus Tipo 2/diagnóstico , Glutamato Descarboxilase , Humanos , Fenótipo
2.
Diabetologia ; 63(10): 2158-2168, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32705316

RESUMO

AIMS/HYPOTHESIS: We aimed to characterise the immunogenic background of insulin-dependent diabetes in a resource-poor rural African community. The study was initiated because reports of low autoantibody prevalence and phenotypic differences from European-origin cases with type 1 diabetes have raised doubts as to the role of autoimmunity in this and similar populations. METHODS: A study of consecutive, unselected cases of recently diagnosed, insulin-dependent diabetes (n = 236, ≤35 years) and control participants (n = 200) was carried out in the ethnic Amhara of rural North-West Ethiopia. We assessed their demographic and socioeconomic characteristics, and measured non-fasting C-peptide, diabetes-associated autoantibodies and HLA-DRB1 alleles. Leveraging genome-wide genotyping, we performed both a principal component analysis and, given the relatively modest sample size, a provisional genome-wide association study. Type 1 diabetes genetic risk scores were calculated to compare their genetic background with known European type 1 diabetes determinants. RESULTS: Patients presented with stunted growth and low BMI, and were insulin sensitive; only 15.3% had diabetes onset at ≤15 years. C-peptide levels were low but not absent. With clinical diabetes onset at ≤15, 16-25 and 26-35 years, 86.1%, 59.7% and 50.0% were autoantibody positive, respectively. Most had autoantibodies to GAD (GADA) as a single antibody; the prevalence of positivity for autoantibodies to IA-2 (IA-2A) and ZnT8 (ZnT8A) was low in all age groups. Principal component analysis showed that the Amhara genomes were distinct from modern European and other African genomes. HLA-DRB1*03:01 (p = 0.0014) and HLA-DRB1*04 (p = 0.0001) were positively associated with this form of diabetes, while HLA-DRB1*15 was protective (p < 0.0001). The mean type 1 diabetes genetic risk score (derived from European data) was higher in patients than control participants (p = 1.60 × 10-7). Interestingly, despite the modest sample size, autoantibody-positive patients revealed evidence of association with SNPs in the well-characterised MHC region, already known to explain half of type 1 diabetes heritability in Europeans. CONCLUSIONS/INTERPRETATION: The majority of patients with insulin-dependent diabetes in rural North-West Ethiopia have the immunogenetic characteristics of autoimmune type 1 diabetes. Phenotypic differences between type 1 diabetes in rural North-West Ethiopia and the industrialised world remain unexplained.


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Transportador 8 de Zinco/imunologia , Adolescente , Adulto , Idade de Início , População Negra/genética , Peptídeo C/sangue , Criança , Diabetes Mellitus Tipo 1/genética , Etiópia , Feminino , Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Humanos , Masculino , Análise de Componente Principal , Adulto Jovem
3.
Diabetologia ; 61(7): 1644-1649, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29619531

RESUMO

AIMS/HYPOTHESIS: Adult-onset type 1 diabetes, in which the 65 kDa isoform of GAD (GAD65) is a major autoantigen, has a broad clinical phenotype encompassing variable need for insulin therapy. This study aimed to evaluate whether autoantibodies against N-terminally truncated GAD65 more closely defined a type 1 diabetes phenotype associated with insulin therapy. METHODS: Of 1114 participants with adult-onset diabetes from the Action LADA (latent autoimmune diabetes in adults) study with sufficient sera, we selected those designated type 1 (n = 511) or type 2 diabetes (n = 603) and retested the samples in radiobinding assays for human full-length GAD65 autoantibodies (f-GADA) and N-terminally truncated (amino acids 96-585) GAD65 autoantibodies (t-GADA). Individuals' clinical phenotypes were analysed according to antibody binding patterns. RESULTS: Overall, 478 individuals were f-GADA-positive, 431 were t-GADA-positive and 628 were negative in both assays. Risk of insulin treatment was augmented in t-GADA-positive individuals (OR 4.69 [95% CI 3.57, 6.17]) compared with f-GADA-positive individuals (OR 3.86 [95% CI 2.95, 5.06]), irrespective of diabetes duration. Of 55 individuals who were f-GADA-positive but t-GADA-negative, i.e. with antibody binding restricted to the N-terminus of GAD65, the phenotype was similar to type 2 diabetes with low risk of progression to insulin treatment. Compared with these individuals with N-terminal GAD65-restricted GADA, t-GADA-positive individuals were younger at diagnosis (p = 0.005), leaner (p < 0.0001) and more often had multiple diabetes-associated autoantibodies (28.3% vs 7.3%; p = 0.0005). CONCLUSIONS/INTERPRETATION: In individuals with adult-onset diabetes, presence of N-terminally truncated GAD65 autoantibodies is associated with the clinical phenotype of autoimmune type 1 diabetes and predicts insulin therapy.


Assuntos
Autoanticorpos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Glutamato Descarboxilase/imunologia , Fragmentos de Peptídeos/imunologia , Adulto , Idade de Início , Idoso , Autoanticorpos/sangue , Biomarcadores/sangue , Estudos Transversais , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes
4.
Curr Diab Rep ; 17(10): 89, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28815391

RESUMO

PURPOSE OF REVIEW: Epigenetics is defined as mitotically heritable changes in gene expression that do not directly alter the DNA sequence. By implication, such epigenetic changes are non-genetically determined, although they can be affected by inherited genetic variation. Extensive evidence indicates that autoimmune diseases including type 1 diabetes are determined by the interaction of genetic and non-genetic factors. Much is known of the genetic causes of these diseases, but the non-genetic effects are less clear-cut. Further, it remains unclear how they interact to cause the destructive autoimmune process. This review identifies the key issues in the genetic/non-genetic interaction, examining the most recent evidence of the role of non-genetic effects in the disease process, including the impact of epigenetic effects on key pathways. RECENT FINDINGS: Recent research indicates that these pathways likely involve immune effector cells both of the innate and adaptive immune response. Specifically, there is evidence of cell type-specific enrichment in altered DNA methylation, changes which were temporally stable and enriched at gene regulatory elements. Epigenomics remains in its infancy, and we anticipate further studies will define how the interaction of genetic and non-genetic effects induces tissue-specific destruction and enhances our ability to predict, and possibly even modify that process.


Assuntos
Diabetes Mellitus Tipo 1/genética , Epigênese Genética , Animais , Doenças Autoimunes/genética , Epistasia Genética , Predisposição Genética para Doença , Humanos , Fatores de Risco
6.
Genes (Basel) ; 8(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829396

RESUMO

Type 1 diabetes (T1D) is classically characterised by the clinical need for insulin, the presence of disease-associated serum autoantibodies, and an onset in childhood. The disease, as with other autoimmune diseases, is due to the interaction of genetic and non-genetic effects, which induce a destructive process damaging insulin-secreting cells. In this review, we focus on the nature of this interaction, and how our understanding of that gene-environment interaction has changed our understanding of the nature of the disease. We discuss the early onset of the disease, the development of distinct immunogenotypes, and the declining heritability with increasing age at diagnosis. Whilst Human Leukocyte Antigens (HLA) have a major role in causing T1D, we note that some of these HLA genes have a protective role, especially in children, whilst other non-HLA genes are also important. In adult-onset T1D, the disease is often not insulin-dependent at diagnosis, and has a dissimilar immunogenotype with reduced genetic predisposition. Finally, we discuss the putative nature of the non-genetic factors and how they might interact with genetic susceptibility, including preliminary studies of the epigenome associated with T1D.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa