Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 183(4): 1058-1069.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058755

RESUMO

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/metabolismo , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/uso terapêutico , Reações Antígeno-Anticorpo , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
PLoS Biol ; 20(11): e3001871, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383605

RESUMO

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Eliminação de Partículas Virais , Anticorpos Bloqueadores
3.
Euro Surveill ; 29(2)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214083

RESUMO

Variant BA.2.86 and its descendant, JN.1, of SARS-CoV-2 are rising in incidence across Europe and globally. We isolated recent JN.1, BA.2.86, EG.5, XBB.1.5 and earlier variants. We tested live virus neutralisation of sera taken in September 2023 from vaccinated and exposed healthy persons (n = 39). We found clear neutralisation escape against recent variants but no specific pronounced escape for BA.2.86 or JN.1. Neutralisation escape corresponds to recent variant predominance but may not be causative of the recent upsurge in JN.1 incidence.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Europa (Continente)/epidemiologia , Nível de Saúde , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
J Clin Immunol ; 43(5): 869-881, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36932291

RESUMO

PURPOSE: Humoral and cellular immune responses were described after COVID-19 vaccination in patients with common variable immunodeficiency disorder (CVID). This study aimed to investigate SARS-CoV-2-specific antibody quality and memory function of B cell immunity as well as T cell responses after COVID-19 vaccination in seroresponding and non-responding CVID patients. METHODS: We evaluated antibody avidity and applied a memory B cell ELSPOT assay for functional B cell recall memory response to SARS-CoV-2 after COVID-19 vaccination in CVID seroresponders. We comparatively analyzed SARS-CoV-2 spike reactive polyfunctional T cell response and reactive peripheral follicular T helper cells (pTFH) by flow cytometry in seroresponding and non-seroresponding CVID patients. All CVID patients had previously failed to mount a humoral response to pneumococcal conjugate vaccine. RESULTS: SARS-CoV-2 spike antibody avidity of seroresponding CVID patients was significantly lower than in healthy controls. Only 30% of seroresponding CVID patients showed a minimal memory B cell recall response in ELISPOT assay. One hundred percent of CVID seroresponders and 83% of non-seroresponders had a detectable polyfunctional T cell response. Induction of antigen-specific CD4+CD154+CD137+CXCR5+ pTFH cells by the COVID-19 vaccine was higher in CVID seroresponder than in non-seroresponder. Levels of pTFH did not correlate with antibody response or avidity. CONCLUSION: Reduced avidity and significantly impaired recall memory formation after COVID-19 vaccination in seroresponding CVID patients stress the importance of a more differentiated analysis of humoral immune response in CVID patients. Our observations challenge the clinical implications that follow the binary categorization into seroresponder and non-seroresponder.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Humanos , Células B de Memória , Vacinas contra COVID-19 , Afinidade de Anticorpos , Imunodeficiência de Variável Comum/terapia , SARS-CoV-2 , Vacinação , Anticorpos Antivirais
5.
Mult Scler ; 29(7): 884-888, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36974938

RESUMO

OBJECTIVE: To analyze anti-SARS-CoV-2-S1-IgG levels, avidity, Omicron BA.2 variant neutralizing capacity, and SARS-CoV-2-specific T cells in anti-CD20-treated patients with multiple sclerosis (aCD20pwMS) after two, three, or four COVID-19 vaccinations. RESULTS: Frequencies of aCD20pwMS with detectable SARS-CoV-2-S1-IgG increased moderately between two (31/61 (51%)), three (31/57 (54%)), and four (17/26 (65%)) vaccinations. However, among patients with detectable SARS-CoV-2-S1-IgG, frequencies of high avidity (6/31 (19%) vs 11/17 (65%)) and Omicron neutralizing antibodies (0/10 (0%) vs 6/10 (60%)) increased strongly between two and four vaccinations. SARS-CoV-2-specific T cells were detectable in >92% after two or more vaccinations. CONCLUSION: Additional vaccinations qualitatively improve SARS-CoV-2 antibody responses.


Assuntos
COVID-19 , Esclerose Múltipla , Humanos , Imunidade Humoral , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Vacinação
6.
Virol J ; 20(1): 257, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940989

RESUMO

BACKGROUND: Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied. METHODS: We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic. We engineered the resulting immune escape mutations E484K, -A, and -Q in recombinant SARS-CoV-2. We characterized viral replication, entry, and competitive fitness with and without immune serum from humans with defined exposure/vaccination history and hamsters monospecifically infected with the E484K variant. We additionally engineered a virus containing the Omicron signature mutations N501Y and Q498R that were predicted to epistatically enhance receptor binding. RESULTS: Multistep growth kinetics in Vero-, Calu-3, and NCI-H1299 were identical between viruses. Synchronized entry experiments based on cold absorption and temperature shift identified only an insignificant trend toward faster entry of the E484K variant. Competitive passage experiments revealed clear replicative fitness differences. In absence of immune serum, E484A and E484Q, but not E484K, were replaced by wildtype (WT) in competition assays. In presence of immune serum, all three mutants outcompeted WT. Decreased E484A fitness levels were over-compensated for by N501Y and Q498R, identifying a putative Omicron founder background that exceeds the intrinsic and effective fitness of WT and matches that of E484K. Critically, the E484A/Q498R/N501Y mutant and E484K have equal fitness also in presence of pre-Omicron vaccinee serum, whereas the fitness gain by E484K is lost in the presence of serum raised against the E484K variant in hamsters. CONCLUSIONS: The emergence of E484A and E484Q prior to widespread population immunity may have been limited by fitness costs. In populations already exposed to the early immune escape epitope E484K, the Omicron founder background may have provided a basis for alternative immune escape evolution via E484A. Studies of major antigenic epitope changes with and without their epistatic context help reconstruct the sequential adjustments of intrinsic fitness versus neutralization escape during the evolution of major SARS-CoV-2 variants in an increasingly immune human population.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Epitopos/genética , SARS-CoV-2/genética , Mutação , Soros Imunes , Epitopos Imunodominantes , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes
7.
Ann Rheum Dis ; 81(6): 881-888, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288376

RESUMO

OBJECTIVE: To study the effect of methotrexate (MTX) and its discontinuation on the humoral immune response after COVID-19 vaccination in patients with autoimmune rheumatic diseases (AIRD). METHODS: In this retrospective study, neutralising SARS-CoV-2 antibodies were measured after second vaccination in 64 patients with AIRD on MTX therapy, 31 of whom temporarily paused medication without a fixed regimen. The control group consisted of 21 patients with AIRD without immunosuppressive medication. RESULTS: Patients on MTX showed a significantly lower mean antibody response compared with patients with AIRD without immunosuppressive therapy (71.8% vs 92.4%, p<0.001). For patients taking MTX, age correlated negatively with immune response (r=-0.49; p<0.001). All nine patients with antibody levels below the cut-off were older than 60 years. Patients who held MTX during at least one vaccination showed significantly higher mean neutralising antibody levels after second vaccination, compared with patients who continued MTX therapy during both vaccinations (83.1% vs 61.2%, p=0.001). This effect was particularly pronounced in patients older than 60 years (80.8% vs 51.9%, p=0.001). The impact of the time period after vaccination was greater than of the time before vaccination with the critical cut-off being 10 days. CONCLUSION: MTX reduces the immunogenicity of SARS-CoV-2 vaccination in an age-dependent manner. Our data further suggest that holding MTX for at least 10 days after vaccination significantly improves the antibody response in patients over 60 years of age.


Assuntos
Doenças Autoimunes , COVID-19 , Doenças Reumáticas , Idoso , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Estudos Retrospectivos , Doenças Reumáticas/tratamento farmacológico , SARS-CoV-2 , Vacinação
8.
Oecologia ; 188(1): 289-302, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936542

RESUMO

Anthropogenic environmental change can impact community and population traits such as species diversity and population densities, which have been shown to influence the prevalence of viruses in wildlife reservoirs. In particular, host species resilient to changes in their natural habitat may increase in numbers, which in turn can affect the prevalence of directly transmitted viruses. We have carried out a survey of small mammal communities in three tropical landscapes differing in their degree of environmental change in Central Panama and investigated the effects of community changes on Hepacivirus prevalence. The modification of continuous habitat into partly connected or isolated habitat patches during the past century was linked to changes in species diversity and species assemblages, which was further associated with shifts in the abundance of generalist marsupial (Didelphis marsupialis, Philander opossum) and rodent (Proechimys semispinosus) species. The latter has become dominant in isolated habitat patches and was the only identified Hepacivirus host in our study system. Our analyses suggest that, in addition to the effects of host age and sex, host population density in interaction with sex ratio is a crucial predictor of infection probability. Although we found no significant relationships between species diversity per se and infection probability, the lowest prevalence detected in the landscape with the highest species diversity indicates that shifts in species assemblages (e.g. changes in the presence and abundance of marsupial predators) impact the host's intraspecific contact rates, the probability of virus transmission and, thus, the virus prevalence. Our study additionally provides important data on the influence of human-induced landscape changes on infection probability and, therefore, on virus prevalence in wildlife and emphasizes the importance of a landscape-scale approach with concomitant consideration of the complex interactions between ecological factors.


Assuntos
Hepacivirus , Roedores , Animais , Ecologia , Ecossistema , Humanos , Panamá
9.
iScience ; 26(4): 106323, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36925720

RESUMO

The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.

10.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35860221

RESUMO

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

11.
Science ; 382(6666): eadj0070, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797027

RESUMO

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Assuntos
Antígenos Virais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacinas de mRNA/imunologia , Vacinação , Substituição de Aminoácidos
12.
Mol Ther Oncolytics ; 24: 43-58, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977341

RESUMO

PD-1/PD-L1 checkpoint blockade has achieved unprecedented success in cancer immunotherapy. Nevertheless, many immune-excluded tumors are resistant to therapy. Combination with oncolytic virotherapy may overcome resistance by inducing acute inflammation, immune cell recruitment, and remodeling of the tumor immune environment. Here, we assessed the combination of oncolytic measles vaccine (MV) vectors and PD-1/PD-L1 blockade. In the MC38cea model of measles virus oncolysis, MV combined with anti-PD-1 and MV vectors encoding anti-PD-1 or anti-PD-L1 antibodies achieved modest survival benefits compared with control MV or vectors encoding the antibody constant regions only. Analyses of tumor samples and tumor-draining lymph nodes revealed slight increases in intratumoral T cell effector cytokines as well as a shift toward an effector memory phenotype in the T cell compartment. Importantly, increased IFN-γ recall responses were observed in tumor rechallenge experiments with mice in complete tumor remission after treatment with MV encoding anti-PD-1 or anti-PD-L1 compared with control MV. These results prompted us to generate MV encoding the clinically approved agents pembrolizumab and nivolumab. Previously, we have generated MV encoding atezolizumab. We demonstrated the functionality of the novel vectors in vitro. We envision these vectors as therapeutics that induce and support durable anti-tumor immune memory.

13.
RMD Open ; 8(2)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36597977

RESUMO

OBJECTIVE: The development of sufficient COVID-19 vaccines has been a big breakthrough in fighting the global SARS-CoV-2 pandemic. However, vaccination effectiveness can be reduced in patients with autoimmune rheumatic diseases (AIRD). The aim of this study was to identify factors that lead to a diminished humoral vaccination response in patients with AIRD. METHODS: Vaccination response was measured with a surrogate virus neutralisation test and by testing for antibodies directed against the receptor-binding-domain (RBD) of SARS-CoV-2 in 308 fully vaccinated patients with AIRD. In addition, 296 immunocompetent participants were investigated as a control group. Statistical adjusted analysis included covariates with a possible influence on antibody response. RESULTS: Patients with AIRD showed lower antibody responses compared with immunocompetent individuals (median neutralising capacity 90.8% vs 96.5%, p<0.001; median anti-RBD-IgG 5.6 S/CO vs 6.7 S/CO, p<0.001). Lower antibody response was significantly influenced by type of immunosuppressive therapy, but not by rheumatic diagnosis, with patients under rituximab therapy developing the lowest antibody levels. Patients receiving mycophenolate, methotrexate or janus kinase inhibitors also showed reduced vaccination responses. Additional negative influencing factors were vaccination with AZD1222, old age and shorter intervals between the first two vaccinations. CONCLUSION: Certain immunosuppressive therapies are associated with lower antibody responses after vaccination. Additional factors such as vaccine type, age and vaccination interval should be taken into account. We recommend antibody testing in at-risk patients with AIRD and emphasise the importance of booster vaccinations in these patients.


Assuntos
Doenças Autoimunes , COVID-19 , Doenças Reumáticas , Vacinas , Humanos , Vacinas contra COVID-19/uso terapêutico , Formação de Anticorpos , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Terapia de Imunossupressão , Doenças Reumáticas/tratamento farmacológico
14.
Science ; 375(6582): 782-787, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35076281

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Reações Cruzadas , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Deriva e Deslocamento Antigênicos , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
bioRxiv ; 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817952

RESUMO

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 A revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.

16.
Viruses ; 11(10)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623390

RESUMO

Tumor-targeted immunomodulation using oncolytic viral vectors is currently being investigated as a promising strategy in cancer therapy. In a previous study, we showed that a measles virus Schwarz vaccine strain (MeVac) vector encoding an interleukin-12 fusion protein (FmIL-12) is an effective immunotherapy in the MC38cea murine colon adenocarcinoma model. We hypothesized that MeVac encoding interleukin-15 may mediate enhanced T and NK cell responses and thus increase the therapeutic efficacy, especially in NK cell-controlled tumors. Therefore, we generated MeVac vectors encoding an interleukin-15 superagonist, FmIL-15. Replication and oncolytic capacity, transgene expression, and functionality of MeVac FmIL-15 vectors were validated in vitro. Effects on the tumor immune landscape and therapeutic efficacy of both FmIL-12 and FmIL-15 vectors were studied in the MC38cea and B16hCD46 tumor models. Treatment with MeVac FmIL-15 increased T and NK cell infiltration in both models. However, MeVac FmIL-12 showed more robust viral gene expression and immune activation, resulting in superior anti-tumor efficacy. Based on these results, MeVac encoding a human IL-12 fusion protein was developed for future clinical translation.


Assuntos
Regulação Viral da Expressão Gênica , Interleucina-12/agonistas , Interleucina-15/agonistas , Vacina contra Sarampo/imunologia , Adenocarcinoma , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Colo , Modelos Animais de Doenças , Feminino , Genes Virais , Imunoterapia , Interleucina-12/genética , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Sarampo , Camundongos , Camundongos Endogâmicos C57BL , Vírus Oncolíticos , Transcriptoma , Vacinas Sintéticas , Proteínas Virais de Fusão/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Ecohealth ; 16(1): 82-94, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30564998

RESUMO

The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters' tent-making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection possibility. These results underline the necessity of multidisciplinary studies for a better understanding of mechanisms in pathogen-host relationships and for predictions in disease ecology.


Assuntos
Quirópteros/virologia , Infecções por Hepadnaviridae/veterinária , Hepadnaviridae/isolamento & purificação , Animais , Ecossistema , Feminino , Infecções por Hepadnaviridae/virologia , Masculino , Panamá , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa