Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110312

RESUMO

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células , Ciclina D2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Obesidade/tratamento farmacológico , Parabiose , Ligação Proteica , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398325

RESUMO

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Assuntos
Comunicação Celular/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA , Animais , Reprogramação Celular/genética , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/genética , Análise de Célula Única
3.
Artigo em Inglês | MEDLINE | ID: mdl-38910137

RESUMO

BACKGROUND: Cadmium, a toxic metal, is widely encountered in diverse environmental contexts. Despite its pervasive exposure, there is limited research on the association between blood cadmium levels and depression, especially among females. This study aimed to investigate the relationship between blood cadmium levels and depression in adult women. METHODS: Data spanning 2005-2016 from the National Health and Nutrition Examination Survey (NHANES) were selected. Depression was diagnosed with the Patient Health Questionnaire (PHQ-9, score ≥10). Multiple logistic regression, multiple linear regression, and smoothed curve fitting were used to investigate the relationship between blood cadmium and depression. Subgroup analyses and interaction tests were performed to evaluate the stability of this association across populations. RESULTS: A total of 1,173 individuals were diagnosed with depression. The heightened prevalence of depression was linked to increased blood cadmium levels, a trend that persisted even after quartering blood cadmium. In the fully adjusted model, each incremental unit of blood cadmium was associated with a 33% rise in the prevalence of depression (OR = 1.33, 95% CI: 1.21-1.45). Participants in the highest quartile were 63% more likely to experience depression compared to those in the lowest quartile of blood cadmium (OR = 1.63, 95% CI: 1.15-2.30), and PHQ-9 score increased by 0.73 (ß = 0.73, 95% CI: 0.30-1.17). This positive association may be relevant to the general population. CONCLUSIONS: Blood cadmium levels are associated with depression in adult women, and this association varies by age and smoking status.


Assuntos
Cádmio , Depressão , Inquéritos Nutricionais , Fumar , Humanos , Cádmio/sangue , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Depressão/epidemiologia , Depressão/sangue , Estados Unidos/epidemiologia , Adulto Jovem , Fumar/epidemiologia , Fumar/sangue , Idoso , Prevalência , Fatores Etários
4.
Proc Natl Acad Sci U S A ; 116(38): 19090-19097, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481626

RESUMO

Aberrant T cell development is a pivotal risk factor for autoimmune disease; however, the underlying molecular mechanism of T cell overactivation is poorly understood. Here, we identified NF-κB-inducing kinase (NIK) and IkB kinase α (IKKα) in thymic epithelial cells (TECs) as essential regulators of T cell development. Mouse TEC-specific ablation of either NIK or IKKα resulted in severe T cell-mediated inflammation, injury, and fibrosis in the liver and lung, leading to premature death within 18 d of age. NIK or IKKα deficiency abrogated medullary TEC development, and led to breakdown of central tolerance, production of autoreactive T cells, and fatal autoimmune destruction in the liver and lung. TEC-specific ablation of NIK or IKKα also impaired thymic T cell development from the double-negative through the double-positive stages and inhibited peripheral B cell development. These results unravel a hitherto unrecognized essential role of TEC-intrinsic NIK and IKKα pathways in autoimmunity and T cell-instigated chronic liver and lung diseases.


Assuntos
Autoimunidade/imunologia , Quinase I-kappa B/fisiologia , Inflamação/imunologia , Fígado/imunologia , Pulmão/imunologia , Proteínas Serina-Treonina Quinases/fisiologia , Timo/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Homeostase , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Timo/metabolismo , Timo/patologia , Quinase Induzida por NF-kappaB
5.
Proc Natl Acad Sci U S A ; 115(2): E263-E272, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279393

RESUMO

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement. Here, we report a simple cell encapsulation design that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. The device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (1-mo) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance. We demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for 3 mo as well as in immunodeficient SCID-Beige mice using human islets for 4 mo. We further showed, as a proof of concept, the scalability and retrievability in dogs. After 1 mo of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure. This encapsulation device may contribute to a cellular therapy for T1D because of its retrievability and scale-up potential.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/fisiologia , Alginatos , Animais , Diabetes Mellitus Experimental/terapia , Dimetilformamida , Cães , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Hidrogéis , Camundongos , Camundongos SCID , Polimetil Metacrilato , Ratos
6.
Proc Natl Acad Sci U S A ; 111(5): E582-91, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24453213

RESUMO

Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L's physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Homeostase , Mamíferos/metabolismo , Proteínas/metabolismo , Animais , Atrofia , Técnicas de Cultura de Células , Morte Celular , Proliferação de Células , Sobrevivência Celular , Retículo Endoplasmático/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Pâncreas Exócrino/anormalidades , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Pâncreas Exócrino/ultraestrutura , Polirribossomos/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Vesículas Secretórias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Resposta a Proteínas não Dobradas
7.
Trends Cell Biol ; 34(10): 865-881, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38423853

RESUMO

The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Transdução de Sinais , Humanos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Animais
8.
Front Psychiatry ; 15: 1339208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596631

RESUMO

Background and aim: High-sensitivity C-reactive protein (hs-CRP) is a sensitive measure of low-grade inflammation and appears superior to conventional blood tests in assessing cardiovascular disease. The purpose of this investigation was to explore the link between high-sensitivity CRP and depressive symptoms among adults. Methods and results: Multiple logistic regression and smoothed curve fitting were used to investigate the association between hs-CRP and depressive symptoms based on data from the, 2017-2020 National Health and Nutrition Examination Survey (NHANES). Subgroup analyses and interaction tests were used to assess the stability of this relationship across populations. The study comprised 6,293 non-clinical participants, which included 549 individuals with depressive symptoms. The prevalence of depressive symptoms was found to increase with increasing levels of hs-CRP. This trend persisted even after quartetting hs-CRP levels. In the fully adjusted model, each unit increase in hs-CRP was associated with a 10% increase in the odds of depressive symptoms (OR=1.10,95%CI:1.01-1.21). Participants in the highest quartile of hs-CRP had a 39% higher prevalence of depressive symptoms compared to those in the lowest quartile (OR=1.39,95%CI:1.01-1.92). Additionally, this positive correlation was more pronounced in men. Conclusions: In adult Americans, there exists a positive association between elevated hs-CRP levels and depressive symptoms, with a more prominent manifestation of this association observed in males.

9.
J Biol Chem ; 287(29): 24378-86, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22645141

RESUMO

Inflammation in adipose tissue plays an important role in the pathogenesis of obesity-associated complications. However, the detailed cellular events underlying the inflammatory changes at the onset of obesity have not been characterized. Here we show that an acute HFD challenge is unexpectedly associated with elevated alternative (M2) macrophage polarization in adipose tissue mediated by Natural Killer T (NKT) cells. Upon 4d HFD feeding, NKT cells are activated, promote M2 macrophage polarization and induce arginase 1 expression via interleukin (IL)-4 in adipose tissue, not in the liver. In NKT-deficient CD1d(-/-) mice, M2 macrophage polarization in adipose tissue is reduced while systemic glucose homeostasis and insulin tolerance are impaired upon 4d HFD challenge. Thus, our study demonstrate, for the first time to our knowledge, that acute HFD feeding is associated with remarkably pronounced and dynamic immune responses in adipose tissue, and adipose-resident NKT cells may link acute HFD feeding with inflammation.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Interleucina-4/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Células T Matadoras Naturais/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interleucina-4/genética , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
10.
J Biol Chem ; 287(17): 13561-71, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22396530

RESUMO

Natural killer T (NKT) cells are important therapeutic targets in various disease models and are under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type 1 NKT cells, whose abundance decreases with increased adiposity and insulin resistance. Although loss-of-function of NKT cells had no effect on glucose tolerance in animals with prolonged high fat diet feeding, activation of NKT cells by lipid agonist α-galactosylceramide enhances alternative macrophage polarization in adipose tissue and improves glucose homeostasis in animals at different stages of obesity. Furthermore, the effect of NKT cells is largely mediated by the IL-4/STAT6 signaling axis in obese adipose tissue. Thus, our data identify a novel therapeutic target for the treatment of obesity-associated inflammation and type 2 diabetes.


Assuntos
Tecido Adiposo/citologia , Glucose/metabolismo , Células Matadoras Naturais/metabolismo , Macrófagos/citologia , Tecido Adiposo/metabolismo , Adulto , Animais , Índice de Massa Corporal , Feminino , Teste de Tolerância a Glucose , Glicolipídeos/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/metabolismo
11.
Annu Rev Nutr ; 32: 261-86, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22404118

RESUMO

The fields of immunology and metabolism are rapidly converging on adipose tissue. During obesity, many immune cells infiltrate or populate in adipose tissue and promote a low-grade chronic inflammation. Studies to date have suggested that perturbation of inflammation is critically linked to nutrient metabolic pathways and to obesity-associated complications such as insulin resistance and type 2 diabetes. Despite these advances, however, many open questions remain including how inflammatory responses are initiated and maintained, how nutrients impact the function of various immune populations, and how inflammatory responses affect systemic insulin sensitivity. Here we review recent studies on the roles of various immune cells at different phases of obesity and discuss molecular mechanisms underlying obesity-associated inflammation. Better understanding of the events occurring in adipose tissue will provide insights into the pathophysiological role of inflammation in obesity and shed light on the pathogenesis of obesity-associated metabolic syndrome.


Assuntos
Tecido Adiposo/imunologia , Obesidade/imunologia , Imunidade Adaptativa , Tecido Adiposo/metabolismo , Animais , Humanos , Imunidade Inata , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Obesidade/sangue , Obesidade/metabolismo
12.
Nat Cell Biol ; 25(5): 726-739, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142791

RESUMO

Stimulator of interferon genes (STING) orchestrates the production of proinflammatory cytokines in response to cytosolic double-stranded DNA; however, the pathophysiological significance and molecular mechanism underlying the folding and maturation of nascent STING protein at the endoplasmic reticulum (ER) remain unknown. Here we report that the SEL1L-HRD1 protein complex-the most conserved branch of ER-associated degradation (ERAD)-is a negative regulator of the STING innate immunity by ubiquitinating and targeting nascent STING protein for proteasomal degradation in the basal state. SEL1L or HRD1 deficiency in macrophages specifically amplifies STING signalling and immunity against viral infection and tumour growth. Mechanistically, nascent STING protein is a bona fide substrate of SEL1L-HRD1 in the basal state, uncoupled from ER stress or its sensor inositol-requiring enzyme 1α. Hence, our study not only establishes a key role of SEL1L-HRD1 ERAD in innate immunity by limiting the size of the activable STING pool, but identifies a regulatory mechanism and therapeutic approach to targeting STING.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Imunidade Inata
13.
J Biol Chem ; 286(26): 23591-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21592961

RESUMO

Activation of immune cells, including macrophages and CD8(+) T cells, contributes significantly to the advancement of obesity and its associated medical complications, such as atherosclerosis, insulin resistance, and type 2 diabetes. However, how the activation of these immune cells is regulated in vivo remains largely unexplored. Here we show that a group of immature myeloid cells with cell surface markers of Gr-1(+) CD11b(+) are highly enriched in peripheral tissues (i.e. liver and adipose tissues) during obesity. Down-regulation of these cells in obese animals significantly increases inflammation and impairs insulin sensitivity and glucose tolerance, whereas elevation of these cells via adoptive transfer has the opposite effects. Mechanistically, we show that under obese conditions, the Gr-1(+) cells suppress proliferation and induce apoptosis of CD8(+) T cells and are capable of skewing differentiation of macrophages into insulin-sensitizing, alternatively activated M2 macrophages. Taken together, our study demonstrates that immature myeloid cells provide a checks-and-balances platform to counter proinflammatory immune cells in the liver and adipose tissue during obesity to prevent overt immune responses.


Assuntos
Antígeno CD11b , Resistência à Insulina/imunologia , Células Mieloides/imunologia , Obesidade/imunologia , Receptores de Superfície Celular , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Proliferação de Células , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Obesos , Células Mieloides/patologia , Obesidade/patologia
14.
Sci Adv ; 6(20): eaay6191, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426492

RESUMO

Depletion of fat-resident regulatory T cells (Tregs) and group 2 innate lymphoid cells (ILC2s) has been causally linked to obesity-associated insulin resistance. However, the molecular nature of the pathogenic signals suppress adipose Tregs and ILC2s in obesity remains unknown. Here, we identified the soluble isoform of interleukin (IL)-33 receptor ST2 (sST2) as an obesity-induced adipokine that attenuates IL-33 signaling and disrupts Treg/ILC2 homeostasis in adipose tissue, thereby exacerbates obesity-associated insulin resistance in mice. We demonstrated sST2 is a target of TNFα signaling in adipocytes that is countered by Zbtb7b. Fat-specific ablation of Zbtb7b augments adipose sST2 gene expression, leading to diminished fat-resident Tregs/ILC2s, more pronounced adipose tissue inflammation and fibrosis, and impaired glucose homeostasis in mice. Mechanistically, Zbtb7b suppresses NF-κB activation in response to TNFα through destabilizing IκBα. These findings uncover an adipokine-immune signaling pathway that is engaged in obesity to drive the pathological changes of the immunometabolic landscape.


Assuntos
Resistência à Insulina , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
J Clin Invest ; 130(7): 3499-3510, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182217

RESUMO

ß Cell apoptosis and dedifferentiation are 2 hotly debated mechanisms underlying ß cell loss in type 2 diabetes; however, the molecular drivers underlying such events remain largely unclear. Here, we performed a side-by-side comparison of mice carrying ß cell-specific deletion of ER-associated degradation (ERAD) and autophagy. We reported that, while autophagy was necessary for ß cell survival, the highly conserved Sel1L-Hrd1 ERAD protein complex was required for the maintenance of ß cell maturation and identity. Using single-cell RNA-Seq, we demonstrated that Sel1L deficiency was not associated with ß cell loss, but rather loss of ß cell identity. Sel1L-Hrd1 ERAD controlled ß cell identity via TGF-ß signaling, in part by mediating the degradation of TGF-ß receptor 1. Inhibition of TGF-ß signaling in Sel1L-deficient ß cells augmented the expression of ß cell maturation markers and increased the total insulin content. Our data revealed distinct pathogenic effects of 2 major proteolytic pathways in ß cells, providing a framework for therapies targeting distinct mechanisms of protein quality control.


Assuntos
Retículo Endoplasmático , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas/metabolismo , Proteólise , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Animais , Sobrevivência Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Células HEK293 , Humanos , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética
16.
Nat Cell Biol ; 22(10): 1162-1169, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958856

RESUMO

Stem cells need to be protected from genotoxic and proteotoxic stress to maintain a healthy pool throughout life1-3. Little is known about the proteostasis mechanism that safeguards stem cells. Here we report endoplasmic reticulum-associated degradation (ERAD) as a protein quality checkpoint that controls the haematopoietic stem cell (HSC)-niche interaction and determines the fate of HSCs. The SEL1L-HRD1 complex, the most conserved branch of ERAD4, is highly expressed in HSCs. Deletion of Sel1l led to niche displacement of HSCs and a complete loss of HSC identity, and allowed highly efficient donor-HSC engraftment without irradiation. Mechanistic studies identified MPL, the master regulator of HSC identity5, as a bona fide ERAD substrate that became aggregated in the endoplasmic reticulum following ERAD deficiency. Restoration of MPL signalling with an agonist partially rescued the number and reconstitution capacity of Sel1l-deficient HSCs. Our study defines ERAD as an essential proteostasis mechanism to safeguard a healthy stem cell pool by regulating the stem cell-niche interaction.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Receptores de Trombopoetina/metabolismo , Nicho de Células-Tronco , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Trombopoetina/genética , Ubiquitina-Proteína Ligases/genética
17.
Cell Rep ; 16(10): 2630-2640, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568564

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a principal mechanism that targets ER-associated proteins for cytosolic proteasomal degradation. Here, our data demonstrate a critical role for the Sel1L-Hrd1 complex, the most conserved branch of ERAD, in early B cell development. Loss of Sel1L-Hrd1 ERAD in B cell precursors leads to a severe developmental block at the transition from large to small pre-B cells. Mechanistically, we show that Sel1L-Hrd1 ERAD selectively recognizes and targets the pre-B cell receptor (pre-BCR) for proteasomal degradation in a BiP-dependent manner. The pre-BCR complex accumulates both intracellularly and at the cell surface in Sel1L-deficient pre-B cells, leading to persistent pre-BCR signaling and pre-B cell proliferation. This study thus implicates ERAD mediated by Sel1L-Hrd1 as a key regulator of B cell development and reveals the molecular mechanism underpinning the transient nature of pre-BCR signaling.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Pontos de Checagem do Ciclo Celular , Degradação Associada com o Retículo Endoplasmático , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antígenos CD19/metabolismo , Ciclo Celular , Tamanho Celular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Receptores de Antígenos de Linfócitos B , Especificidade por Substrato , Fator de Transcrição CHOP/metabolismo
18.
Mol Biol Cell ; 27(3): 483-90, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26631554

RESUMO

Inflammatory bowel disease (IBD) is an incurable chronic idiopathic disease that drastically decreases quality of life. Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the clearance of misfolded proteins; however, its role in disease pathogenesis remains largely unexplored. Here we show that the expression of SEL1L and HRD1, the most conserved branch of mammalian ERAD, is significantly reduced in ileal Crohn's disease (CD). Consistent with this observation, laboratory mice with enterocyte-specific Sel1L deficiency (Sel1L(ΔIEC)) develop spontaneous enteritis and have increased susceptibility to Toxoplasma gondii-induced ileitis. This is associated with profound defects in Paneth cells and a disproportionate increase of Ruminococcus gnavus, a mucolytic bacterium with known association with CD. Surprisingly, whereas both ER stress sensor IRE1α and effector CHOP are activated in the small intestine of Sel1L(ΔIEC) mice, they are not solely responsible for ERAD deficiency-associated lesions seen in the small intestine. Thus our study points to a constitutive role of Sel1L-Hrd1 ERAD in epithelial cell biology and the pathogenesis of intestinal inflammation in CD.


Assuntos
Enterócitos/metabolismo , Proteínas/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Duodeno/metabolismo , Duodeno/patologia , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Endorribonucleases/fisiologia , Enterite/metabolismo , Enterite/patologia , Feminino , Microbioma Gastrointestinal , Haploinsuficiência , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Celulas de Paneth/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fator de Transcrição CHOP/fisiologia
19.
Sci Rep ; 5: 14124, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369936

RESUMO

CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRß and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.


Assuntos
Antígenos de Superfície/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Imunomodulação , Células T Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Imunização , Imunofenotipagem , Contagem de Linfócitos , Camundongos , Células T Matadoras Naturais/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/metabolismo
20.
Biomaterials ; 37: 40-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25453936

RESUMO

Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanofibras/química , Animais , Linhagem Celular Tumoral , Humanos , Transplante das Ilhotas Pancreáticas , Masculino , Fenômenos Mecânicos , Camundongos Endogâmicos C57BL , Nanofibras/ultraestrutura , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa