Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Am Chem Soc ; 146(15): 10478-10488, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578196

RESUMO

During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.


Assuntos
Nanoestruturas , Coroa de Proteína , Escleroproteínas , Peroxidase , Adsorção , Corantes , Catálise
2.
Analyst ; 148(14): 3306-3311, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37334554

RESUMO

Rapid on-site detection of copper(II) ions (Cu2+) with high sensitivity and selectivity is of great significance in the safety monitoring of drinking water and food. Colorimetric detection is a robust fast determination method with the main drawback of low sensitivity. Herein, we developed a colorimetric chemosensor based on a colored polymer product. Via a Cu-Fenton mechanism, 1-naphthylamine (α-NA) was oxidized by H2O2 and brownish-red poly(1-naphthylamine) (PNA) was produced. The obtained Cu2+ sensor showed a linear response from 0.05 µM to 7 µM, with a detection limit of 62 nM. Our findings expanded chromogenic reaction types for colorimetric detection.

3.
Nanotechnology ; 32(48)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34404038

RESUMO

Surface chemistry control is a key means to improve substrate selectivity and enhance catalytic activity of nanozymes, a kind of novel artificial enzymes. Herein, we demonstrated that apart from chemical properties of functional groups, their spatial distance to the catalytic sites is also very important to improve the catalytic performance of nanozymes. Using cetyltrimethylammonium bromide (CTAB) coated gold nanorods (AuNR) as the example, we showed that cysteine (Cys) surface modification can greatly enhance the peroxidase activity of AuNR for the oxidation of substrate 3,3',5,5'-tetramethylbenzidine (TMB). By using cysteine derivatives, the key role of the carboxylic group in cysteine is revealed in improving substrate binding and activity enhancement. The electrostatic interactions of carboxylic groups from adsorbed cysteine molecules with protonated amino groups of TMB bring TMB molecules to the surface Au active sites and thus markedly increase catalytic activity. In contrast, despite having two carboxylic groups, glutathione (GSH) surface modification only leads to quite limited improvement of catalytic activity. We speculated that due to large molecular size of GSH, the spatial distance between TMB-GSH and Au is larger than that between TMB-Cys and Au. Furthermore, Raman characterization indicated that at high Cys coverage, they form patches on rod surface via zwitterionic interactions, which may give additional benefits by decreasing the steric hindrance of TMB diffusion to surface Au atom sites. In all, our study highlights the importance of fine surface tuning in the design of nanozymes.


Assuntos
Cisteína/química , Ouro/química , Nanotubos/química , Peroxidases/química , Benzidinas/metabolismo , Catálise , Domínio Catalítico , Glutationa/química , Cinética , Oxirredução , Peroxidases/metabolismo , Especificidade por Substrato , Propriedades de Superfície
4.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936206

RESUMO

With the increasing applications of silver nanoparticles (Ag NPs), the concerns of widespread human exposure as well as subsequent health risks have been continuously growing. The acute and chronic toxicities of Ag NPs in cellular tests and animal tests have been widely investigated. Accumulating evidence shows that Ag NPs can induce inflammation, yet the overall mechanism is incomplete. Herein, using gold nanorod core/silver shell nanostructures (Au@Ag NRs) as a model system, we studied the influence on mice liver and lungs from the viewpoint of metabolism. In agreement with previous studies, Au@Ag NRs' intravenous exposure caused inflammatory reaction, accompanying with metabolic alterations, including energy metabolism, membrane/choline metabolism, redox metabolism, and purine metabolism, the disturbances of which contribute to inflammation. At the same time, dopamine metabolism in liver was also changed. This is the first time to observe the production of dopamine in non-neural tissue after treatment with Ag NPs. As the upregulation of dopamine resists inflammation, it indicates the activation of antioxidant defense systems against oxidative stress induced by Au@Ag NRs. In the end, our findings deepened the understanding of molecular mechanisms of Ag NPs-induced inflammation and provide assistance in the rational design of their biomedical applications.


Assuntos
Dopamina/metabolismo , Inflamação/tratamento farmacológico , Nanoestruturas/química , Nanotubos/química , Animais , Ouro/química , Humanos , Inflamação/metabolismo , Inflamação/patologia , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Nanoestruturas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Prata/química
5.
J Nanobiotechnology ; 17(1): 4, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630496

RESUMO

After publication of the original article [1], an error was noted in the author affiliation. Lin Long is also affiliated to the College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, China, which is her first affiliation.

6.
Small ; 14(52): e1803715, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30430733

RESUMO

Gold nanorods (AuNRs), with their unique physicochemical properties, are recognized as promising materials for biomedical applications. Chemical modification of their surfaces is attracting increasing attention with regard to cytotoxicity and cellular uptake. Herein, the toxicological effects of three types of polymer-coated AuNRs, which are cetyltrimethylammonium bromide-coated AuNRs, polystyrene sulphonate-coated AuNRs, and poly(diallyldimethyl ammonium chloride-coated AuNRs (PDDAC-AuNRs), on vascular smooth muscle cells (VSMCs) are investigated. The results show significantly different effects on VSMCs with different surface coatings. PDDAC-AuNRs, which were nontoxic in cancer cells in previous reports, display extreme toxicity to VSMCs. Initial contact between AuNRs and cell membranes is the important step in AuNRs cellular uptake. Force spectroscopy based on atomic force microscopy is exploited to study interactions between AuNRs and VSMCs membrane in the absence or presence of a corona on the AuNRs surface. The results show that the binding force and binding probability between AuNRs and membranes are closely related to cytotoxicity and cellular responses. These findings highlight the importance of assessing nanoparticle cytotoxicity in somatic cells for medical applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Nanotubos/química , Compostos Alílicos/química , Materiais Biocompatíveis/química , Humanos , Compostos de Amônio Quaternário/química
7.
J Nanobiotechnology ; 16(1): 46, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720232

RESUMO

BACKGROUND: As a promising candidate for artificial enzymes, catalytically active nanomaterials show several advantages over natural enzymes, such as controlled synthesis at low cost, tunability of catalytic activities, and high stability under stringent conditions. Rod-shaped Au-Pt core/shell nanoparticles (Au@Pt NRs), prepared by Au nanorod-mediated growth, exhibit peroxidase-like activities and could serve as an inexpensive replacement for horseradish peroxidase, with potential applications in various bio-detections. The determination of measles virus is accomplished by a capture-enzyme-linked immunosorbent assay (ELISA) using Au@Pt NR-antigen conjugates. RESULTS: Based on the enhanced catalytic properties of this nanozyme probe, a linear response was observed up to 10 ng/mL measles IgM antibodies in human serum, which is 1000 times more sensitive than commercial ELISA. CONCLUSIONS: Hence, these findings provide positive proof of concept for the potential of Au@Pt NR-antigen conjugates in the development of colorimetric biosensors that are simple, robust, and cost-effective.


Assuntos
Antígenos Virais/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Imunoglobulina M/sangue , Vírus do Sarampo/imunologia , Sarampo/diagnóstico , Nanotubos/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antígenos Virais/química , Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Ouro/química , Peroxidase do Rábano Silvestre/química , Humanos , Imunoglobulina M/imunologia , Limite de Detecção , Sarampo/imunologia , Platina/química
8.
Metrologia ; 55(2): 254-267, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32410745

RESUMO

Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

9.
Small ; 13(10)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28009471

RESUMO

As a widely used nanomaterial in daily life, silver nanomaterials may cause great concern to female reproductive system as they are found to penetrate the blood-placental barrier and gain access to the ovary. However, it is largely unknown about how silver nanomaterials influence ovarian physiology and functions such as hormone production. This study performs in vitro toxicology study of silver nanomaterials, focusing especially on cytotoxicity and steroidogenesis and explores their underlying mechanisms. This study exposes primary rat granulosa cells to gold nanorod core/silver shell nanostructures (Au@Ag NRs), and compares outcomes with cells exposed to gold nanorods. The Au@Ag NRs generate more reactive oxygen species and reduce mitochondrial membrane potential and less production of adenosine triphosphate. Au@Ag NRs promote steroidogenesis, including progesterone and estradiol, in a time- and dose-dependent manner. Chemical reactivity and transformation of Au@Ag NRs are then studied by electron spin resonance spectroscopy and X-ray absorption near edge structure, which analyze the generation of free radical and intracellular silver species. Results suggest that both particle-specific activity and intracellular silver ion release of Au@Ag NR contribute to the toxic response of granulosa cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanotubos/química , Prata/química , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Phys Chem Chem Phys ; 19(32): 21401-21406, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783186

RESUMO

The ability to detect chiral molecules renders plasmonic nanosensors as promising tools for the study of chirality phenomena in living systems. Using gold nanorod based plasmonic nanosensors, we investigated here typically chiral zwitterionic electrostatic (Zw-Es) and hydrogen-bonding (Hb) interactions occurring via amine and carboxylic groups at nanoscale interfaces in aqueous solutions. Our results reveal that the plasmonic circular dichroism responses of the nanosensors can have both conformational sensitivity and chiral selectivity to the interfacial molecular interactions. Such a dual function of the plasmonic nanosensors enables a new chiroptical way to differentiate between chiral Zw-Es and Hb interactions, to monitor the transformation between these two interaction forces, and particularly to recognize homochiral Zw-Es interactions in solution. Together with the surface enhanced Raman scattering (SERS) technique, this plasmonic CD based biosensing could have important values for the insightful understanding of chirality-dependent molecular recognition in biological and pharmaceutical systems.

11.
Langmuir ; 31(4): 1537-46, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25564759

RESUMO

Au@Cu2O core-shell nanostructures are fabricated to have a plasmon enhancement effect using Au nanorods (Au NRs) as a plasmon-tailorable core. By varying the concentration of Au NRs, we can tune the shell thickness in the range of 10-25 nm. The shell is composed of Cu2O nanocrystallites. Because of the thin shells, the extinction spectra at wavelength >500 nm are dominated by the Au core. However, the large dielectric constant of the shell causes an obvious red shift of the surface plasmon resonance (SPR) band of the Au nanorod. Besides, transverse octupolar SPR appears as a result of the anisotropy of the core and the high dielectric constant of the shell. The anisotropic geometry of the Au NR is found to support the octupolar resonances at smaller sizes than for their spherical counterpart. Theoretical simulations indicate that the transverse SPR bands are divided into two resonances, which are dipolar- and octupolar-dominant, respectively. The Cu2O shell degrades via a defect-mediated oxidative pathway, which is aggravated upon longitudinal SPR excitation. The SPR-mediated local field enhancement and resonance energy transfer are found to enhance the excitation of the defect states in the shell, thus providing a simple yet selective probing strategy for defect states.

12.
Phys Chem Chem Phys ; 17(12): 8187-93, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25731142

RESUMO

Chiral metal nanostructures, which exhibit plasmonic circular dichroism (PCD), have great potential for the development of chiral sensors and devices. Previously, we developed a method for fabricating chiral gold-nanorod oligomers: the nanorods are linked by achiral molecules, while chiral molecules (e.g.l- or d-cysteine) on the Au surface exert a directional twisting force on the oligomers and thereby generate a PCD signal. In this paper, we investigate how the location of chiral molecules and the interparticle distance affect the PCD of the oligomers. Cysteine at the ends of the nanorods and those on the side were found to induce PCD with opposite signs. When we increased the interparticle distance, the PCD signal was weakened; in particular, cysteine at the ends lost the twisting effect. Besides introducing the twisting force at the Au surface, chiral molecules in the hydrophobic surfactant bilayer and those adsorbed outside the surfactants can also twist the oligomers and generate PCD signals. These findings not only provide guidelines to the manipulation of PCD signals, but also serve as a more elaborate platform for studying the nanoscale interactions between nanoparticles.

13.
J Am Chem Soc ; 136(20): 7317-26, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24773323

RESUMO

External stimuli, such as ultrasound, magnetic field, and light, can be applied to activate in vivo tumor targeting. Herein, we fabricated polymer encapsulated gold nanorods to couple the photothermal properties of gold nanorods and the thermo- and pH-responsive properties of polymers in a single nanocomposite. The activation mechamism was thus transformed from heat to near-infrared (NIR) laser, which can be more easily controlled. Doxorubicin, a clinical anticancer drug, can be loaded into the nanocomposite through electrostatic interactions with high loading content up to 24%. The nanocomposite's accumulation in tumor post systematic administration can be significantly enhanced by NIR laser irradiation, providing a prerequisite for their therapeutic application which almost completely inhibited tumor growth and lung metastasis. Since laser can be manipulated very precisely and flexibly, the nanocomposite provides an ideally versatile platform to simultaneously deliver heat and anticancer drugs in a laser-activation mechanism with facile control of the area, time, and dosage. The NIR laser-induced targeted cancer thermo-chemotherapy without using targeting ligands represents a novel targeted anticancer strategy with facile control and practical efficacy.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Ouro/química , Nanocompostos/química , Nanotubos/química , Polímeros/química , Temperatura , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Lasers , Camundongos , Relação Estrutura-Atividade , Distribuição Tecidual
14.
Langmuir ; 30(41): 12376-83, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25244407

RESUMO

Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2.


Assuntos
Cobre/química , Ouro/química , Nanotubos/química , Oxigênio/química , Íons/química , Cinética , Tamanho da Partícula , Propriedades de Superfície
15.
J Nanosci Nanotechnol ; 14(6): 4124-38, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738361

RESUMO

Gold nanostructures with promising applications in biomedical field have attracted great attention. However, some fundamental questions other than the development of novel applications should be elucidated before they can actually serve as biomedicines in the clinic. Bio-safety is one of the most important issues. Since numerous modifications (e.g., surface coating and composites) have been designed on gold nanoparticles (GNPs) to extend their application, there would be hundreds of GNPs synthesized in the lab although the prototypes of GNPs (i.e., cluster, shell, rod, sphere, cage, and star) are rather limited. Thus, in the present work we aim to conduct our experiments only on the most basic types of GNPs--including gold nanocluster (GNC), gold nanorod (GNR) and gold nanosphere (GNS), to investigate their biodistribution and toxicities in vivo, in the hope of revealing some basic rules which could be further extended to other complicated situations. Bovine serum albumin (BSA) was coated at the surface to increase their plasma stability and of the same BSA coating would help to compare the fate and behaviors of various GNPs in vivo. After intravenous administration of different GNPs with an equal content of gold element at 0.5 mg/kg in mice, samples were harvested at a series of time points. Biodistribution was compared among different GNPs and the process of accumulation-retention-clearance of each kind of GNP was also observed through quantification analysis by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed, with the same BSA coating at the surface and similar negative charge, size rather than shape was dominating the in vivo fate of GNPs. Even between GNC and hydrolyzed GNC with their size at 7.1 and 3.2 nm, huge difference in the kidney accumulation was observed. Totally, GNR and GNS in relative large size preferred to accumulate in liver and spleen whereas GNC in relative small size tended to accumulate in liver and kidney. GNPs resided in liver were hardly cleared out of body till 28 d whereas their accumulation in kidney was almost entirely eliminated with prolonged time, although not as rapid as reported in previous work. In vivo toxicities evaluated by pathology observation and blood biochemical analysis also revealed slight liver and kidney damage, basically associated with the biodistribution pattern of GNPs.


Assuntos
Ouro/química , Ouro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Vísceras/química , Vísceras/efeitos dos fármacos , Animais , Ouro/administração & dosagem , Injeções Intravenosas , Masculino , Teste de Materiais , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual , Vísceras/patologia
16.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1131-1140, 2024 Apr 18.
Artigo em Zh | MEDLINE | ID: mdl-38884248

RESUMO

To understand the macrozoobenthic community composition and spatial-temporal distribution characteristics of macrobenthos in the waters of Miaodao Archipelago, Yantai, Shandong and its response to habitat changes, we conducted surveys of macrobenthos and environmental elements in the waters of Miaodao Islands in May (spring), August (summer), and October (autumn) in 2022. Results showed that a total of 127 macrozoobenthic species were recorded, with Mollusca and Annelida (Polychaeta) as the dominant taxa, consisting of 47 and 45 species, respectively. The key dominant species included Sternaspis chinensis, Glycinde bonhourei, Moerella hilaris, and Amphioplus (Lymanella) japonicus. The average annual density and biomass of macrozoobenthos were 190 ind·m-2 and 28.69 g·m-2, respectively. There was no significant seasonal differences in density and biomass. The Shannon diversity index (H), evenness index (J), and richness index (D) averaged 3.10, 0.90, and 2.40, respectively. Cluster analysis results showed low similarity coefficients of community among the three seasons, suggesting a distinct distribution pattern. Factors such as bottom seawater temperature, chlorophyll a, nutrient, sediment grain size, and organic matter content could significantly influence the structure and diversity of macrozoobenthic community. Compared with historical research data, the Changdao National Wetland Nature Reserve and the implementation of enclosure aquaculture have led to notable changes in the dominant species of macrobenthos. Specifically, there was a noticeable decline in both density and H, and an increase in biomass and J. Additionally, body size of benthic fauna was transitioning from small to big.


Assuntos
Biodiversidade , Ecossistema , Invertebrados , Moluscos , Estações do Ano , China , Animais , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento , Moluscos/crescimento & desenvolvimento , Moluscos/classificação , Poliquetos/crescimento & desenvolvimento , Poliquetos/classificação , Dinâmica Populacional , Oceanos e Mares , Água do Mar/análise , Ilhas , Biomassa
17.
J Am Chem Soc ; 135(46): 17359-68, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24215358

RESUMO

Regarding the importance of the biological effects of nanomaterials, there is still limited knowledge about the binding structure and stability of the protein corona on nanomaterials and the subsequent impacts. Here we designed a hard serum albumin protein corona (BSA) on CTAB-coated gold nanorods (AuNRs) and captured the structure of protein adsorption using synchrotron radiation X-ray absorption spectroscopy, microbeam X-ray fluorescent spectroscopy, and circular dichroism in combination with molecular dynamics simulations. The protein adsorption is attributed to at least 12 Au-S bonds and the stable corona reduced the cytotoxicity of CTAB/AuNRs. These combined strategies using physical, chemical, and biological approaches will improve our understanding of the protective effects of protein coronas against the toxicity of nanomaterials. These findings have shed light on a new strategy for studying interactions between proteins and nanomaterials, and this information will help further guide the rational design of nanomaterials for safe and effective biomedical applications.


Assuntos
Membrana Celular/química , Ouro/química , Nanotubos/química , Soroalbumina Bovina/química , Adsorção , Animais , Sítios de Ligação , Bovinos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Ouro/farmacologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície , Síncrotrons , Espectroscopia por Absorção de Raios X
18.
Langmuir ; 29(21): 6232-41, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23672308

RESUMO

Bottom-up self-assembly is able to constitute a variety of structures and has been thought to be a promising way for advanced nanofabrication. Droplet evaporation, as the simplest method, has been used in various self-assemblies. However, the assembled area is not large enough and the order is still not well controlled. Here we show a facile and controllable two-stage droplet evaporation method by adjusting the humidity and temperature of the evaporating droplet. Taking the highly monodispersed gold nanorods (GNRs) as an example, large-area, self-assembly monolayer arrays are reproducibly achieved. To understand the self-assembly mechanism, we adopted simplified models to analyze the interactions between the nanorods. The results show that a metastable state of secondary-energy-minimum exists, especially in the latter stage of the assembly process, leading to the ordered arrays. A large electrostatic barrier between the assembled arrays prevents the formation of the multilayer structures and thereby leads to the preferential monolayers. Moreover, we predict possibilities of different types of assemblies of the nanorods, and a schematic phase diagram is finally given. The results here may offer a way toward high-quality self-assembled nanoparticles superlattices for use in enhanced spectroscopy, sensors, or nanodevices.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Propriedades de Superfície , Volatilização
19.
J Nanosci Nanotechnol ; 13(2): 1006-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646560

RESUMO

A feasible way is developed to prepare Au core/Au-Ag alloy shell nanorods (Au@Au(x)Ag(1-x) NRs) based on co-reduction of gold and silver ions under the guidance of Au NRs templates. Alloy nanorods with a wide composition range (x tunable from 0 to 1) are obtained. The Ag+/Au3+ ratios are found to affect the detailed morphology of the endcaps, which is responsible for the abnormal red-shift of localized surface plasmon resonance (SPR) mode. In consensus with theoretical prediction, dielectric sensitivity of the alloy NRs is mainly determined by the maximum of the LSPR band. Due to the change in electron structure, the alloy shells exhibit lower SERS activities than pure Ag shell.

20.
Nano Lett ; 12(4): 2003-12, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22372996

RESUMO

With the intense international response to the AIDS pandemic, HIV vaccines have been extensively investigated but have failed due to issues of safety or efficacy in humans. Adjuvants for HIV/AIDS vaccines are under intense research but a rational design approach is still lacking. Nanomaterials represent an obvious opportunity in this field due to their unique physicochemical properties. Gold nanostructures are being actively studied as a promising and versatile platform for biomedical application. Herein, we report novel surface-engineered gold nanorods (NRs) used as promising DNA vaccine adjuvant for HIV treatment. We have exploited the effects of surface chemistry on the adjuvant activity of the gold nanorod by placing three kinds of molecules, that is, cetyltrimethylammonium bromide (CTAB), poly(diallydimethylammonium chloride) (PDDAC), and polyethyleneimine (PEI) on the surface of the nanorod. These PDDAC- or PEI-modified Au NRs can significantly promote cellular and humoral immunity as well as T cell proliferation through activating antigen-presenting cells if compared to naked HIV-1 Env plasmid DNA treatment in vivo. These findings have shed light on the rational design of low-toxic nanomaterials as a versatile platform for vaccine nanoadjuvants/delivery systems.


Assuntos
Genes env/imunologia , Ouro/química , HIV-1/imunologia , Nanopartículas Metálicas/química , Vacinas de DNA/imunologia , Cetrimônio , Compostos de Cetrimônio/química , HIV-1/genética , Humanos , Polietilenoimina/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Propriedades de Superfície , Vacinas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa