Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Small ; 20(39): e2304530, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38415903

RESUMO

Elevating the working temperature delivers a simple and universal approach to enhance the energy storage performances of supercapacitors owing to the fundamental improvements in ion transportation kinetics. Among all heating methods, introducing green and sustainable photothermal heating on supercapacitors (SCs) is highly desired yet remains an open challenge, especially for developing an efficient and universal photothermal heating strategy that can be generally applied to arbitrary SC devices. Flash-enabled graphene (FG) absorbers are produced through a simple and facile flash reduction process, which can be coated on the surface of any SC devices to lift their working temperature via a photothermal effect, thus, improving their overall performance, including both power and energy densities. With the systematic temperature-dependent investigation and the in-depth numerical simulation of SC performances, an evident enhancement in capacitance up to 65% can be achieved in photothermally enhanced SC coin cell devices with FG photo-absorbers. This simple, practical, and universal enhancement strategy provides a novel insight into boosting SC performances without bringing complexity in electrode fabrication/optimization. Also, it sheds light on the highly efficient utilization of green and renewable photothermal energies for broad application scenarios, especially for energy storage devices.

2.
Small ; 20(42): e2402575, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38860359

RESUMO

Effective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon-based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect-immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

3.
Opt Lett ; 49(13): 3709-3712, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950248

RESUMO

In the past few years, annular structured beams have been extensively studied due to their unique "doughnut" structure and characteristics such as phase and polarization vortices. Especially in the 2 µm wavelength range, they have shown promising applications in fields such as novel laser communication, optical processing, and quantum information processing. In this Letter, we observed basis vector patterns with orthogonality and completeness by finely cavity-mode tailoring with end-mirror space position in a Tm:CaYAlO4 laser. Multiple annular structured beams including azimuthally, linearly, and radially polarized beams (APB, LPB, and RPB) operated at a Q-switched mode-locking (QML) state with a typical output power of ∼18 mW around 1962 nm. Further numerical simulation proved that the multiple annular structured beams are the coherent superposition of different Hermitian Gaussian modes. Using a self-made M-Z interferometer, we have demonstrated that the obtained multiple annular beams have a vortex phase with orbital angular momentum (OAM) of l = ±1. To the best of our knowledge, this is the first observation of vector and scalar annular vortex beams in the 2 µm solid-state laser.

4.
Chem Rev ; 122(19): 15204-15355, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749269

RESUMO

The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.


Assuntos
Óptica e Fotônica , Humanos
5.
Phys Chem Chem Phys ; 26(12): 9137-9148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456202

RESUMO

Metal-halide perovskite (MHP) single crystals are emerging as potential competitors to their polycrystalline thin-film counterparts. These materials have shown the specific feature of extended absorbance towards the near-infrared (NIR) region, which promises further extension of their applications in the field of photovoltaics and photodetectors. This notable expansion of absorbance has been explained by the narrower effective optical bandgap of MHP single crystals promoted by their large thickness over several micrometres to millimetres. Herein, the attributes of the material's thickness and the measurement technique used to estimate these characteristics are discussed to elucidate the actual origins of the extended absorbance of MHP single crystals. Contrary to the general belief of the narrower bandgap of the MHP single crystals, we demonstrate that the extended NIR absorption in the MHP single crystals mainly originates from the combination of unique below-bandgap absorption of MHPs, the thickness of single crystals, and the technical limitation of the spectrophotometer, with the key attributes of (i) significantly large thickness of the MHP single crystals by suppressing the transmitted light and (ii) the detector's limited dynamic range. Combining the theoretical and experimental characterizations, we clarify the significant role of the large thickness together with the limited sensitivity of the detector in promoting the well-known red shift of the absorption onset of the MHP single crystals. The observations evidently show that in some special circumstances, the acquired absorption spectrum cannot reliably represent the optical bandgap of MHP materials. This highlights some misinterpretations in the estimation of the narrower optical bandgap of the MHP single crystals from conventional optical methods, while the optical bandgap is an inherent property independent of the thickness. The proposed broad applications of the MHP single crystals are dictated by their fascinating properties, and therefore, a deep insight into these features should be considered besides device applications, because much of their property-function relationships are still ambiguous and a subject of debate.

6.
Angew Chem Int Ed Engl ; : e202415797, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438270

RESUMO

Oxygen evolution and reduction reactions (OER and ORR) play crucial roles in energy conversion processes such as water splitting and air batteries, where spin dynamics inherently influence their efficiency. However, the specific contribution of spin has yet to be fully understood. In this study, we intentionally introduce a spin channel through the transformation of trigonal antiferromagnetic SrCoO2.5 into cubic ferromagnetic SrCoO3, aiming to deepen our understanding of spin dynamics in catalytic reactions. Based on the results from spherical-aberration-corrected microscope, synchrotron absorption spectra, magnetic characterizations, and density functional theory calculations, it is revealed that surface electron transfer is predominantly governed by local geometric structures, while the presence of the spin channel significantly enhances the bulk transport of spin-polarized electrons, particularly under high current densities where surface electron transfer is no longer the limiting factor. The overpotential for OER is reduced by at least 70 mV at 150 mA cm-2 due to the enhanced conductivity from spin-polarized electrons facilitated by spin channels, with an expectation of even more significant reductions at higher current densities. This work provides a clearer picture of the role of spin in oxygen-involved electrocatalysis, providing critical insights for the design of more efficient catalytic systems in practical applications.

7.
Small ; 19(50): e2304236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616513

RESUMO

Lead mixed-halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination-induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br-I mixed system because CsPbI3 tends to form a non-perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed-halide perovskites in a glassy metal-organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high-energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed-halide perovskites toward stable and high-performance optoelectronics.

8.
Opt Express ; 31(2): 2102-2111, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785231

RESUMO

Traditional OAM generation devices are bulky and can generally only create OAM with one specific topological charge. Although metasurface-based devices have overcome the volume limitations, no tunable metasurface-based OAM generators have been demonstrated to date. Here, a dynamically tunable multi-topological charge OAM generator based on an ultrathin integrable graphene metalens is demonstrated by simulation using the detour phase technique and spatial multiplexing. Different topological charges can be designed on different focal planes. Stretching the OAM graphene metalens allows the focal plane and the topological values to be changed dynamically. This design method paves an innovative route toward miniaturization and integrating OAM beam-type photonic devices for practical applications.

9.
Opt Express ; 31(6): 9387-9394, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157510

RESUMO

Different from the traditional ideal column symmetry cavities, we directly generated the cylindrical vector pulsed beams in the folded six-mirror cavity by employing a c-cut Tm:CaYAlO4 (Tm:CYA) crystal and SESAM. By adjusting the distance between the curved cavity mirror (M4) and the SESAM, both the radially polarized beam and azimuthally polarized beam are generated around 1962 nm and the two vectorial modes can be freely switched in the resonator. Further increased the pump power to 7 W, the stable radially polarized Q-switched mode-locked (QML) cylindrical vector beams were also obtained with an output power of 55 mW, the sub-pulse repetition rate of 120.42 MHz, pulse duration of ∼0.5 ns and the beam quality factor M2 of ∼2.9. To our knowledge, this is the first report of radially and azimuthally polarized beams in the 2 µm wavelength solid-state resonator.

10.
Nano Lett ; 22(14): 6026-6033, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35639615

RESUMO

Thermochromic materials have been widely applied in energy-efficient buildings, aerospace, textiles, and sensors. Conventional thermochromic materials rely on material phase or structure changes upon thermal stimuli, which only enable a few colors, greatly limiting their applicability. Here, we propose and demonstrate the concept of dynamically tunable thermochromic graphene metamaterials (TGMs), which can achieve continuous color tunability (380-800 nm) with fast (<100 ms) response times. The TGMs are composed of an ultrathin graphene oxide (GO) film on a flexible metal substrate. We demonstrated that external thermal energy can dynamically adjust the water contents in the GO film to manipulate the color of TGMs. An impressive thermochromic sensitivity of 1.11 nm/°C covering a large percentage of the color space has been achieved. Prototype applications for a cup and smartphone have been demonstrated. The reversible TGMs promise great potential for practical applications of temperature sensing in optoelectronic devices, environmental monitoring, and dynamic color modulation.

11.
Angew Chem Int Ed Engl ; 62(14): e202300406, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36754865

RESUMO

Oxygen vacancies-enriched black TiO2 is one promising support for enhancing hydrogen evolution reaction (HER). Herein, oxygen vacancies enriched black TiO2 supported sub-nanometer Pt clusters (Pt/TiO2 -OV ) with metal support interactions is designed through solvent-free microwave and following low-temperature electroless approach for the first time. High-temperature and strong reductants are not required and then can avoid the aggregation of decorated Pt species. Experimental and theoretical calculation verify that the created oxygen vacancies and Pt clusters exhibit synergistic effects for optimizing the reaction kinetics. Based on it, Pt/TiO2 -OV presents remarkable electrocatalytic performance with 18 mV to achieve 10 mA cm-2 coupled with small Tafel slope of 12 mV dec-1 . This work provides quick synthetic strategy for preparing black titanium dioxide based nanomaterials.

12.
Small ; 18(11): e2105830, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878210

RESUMO

Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.


Assuntos
Eletrólise , Água , Eletricidade , Hidrogênio , Água do Mar
13.
Small ; 18(25): e2201340, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35612000

RESUMO

2D covalent organic frameworks (COFs) are considered as one kind of the most promising crystalline porous materials for solar-driven hydrogen production. However, adding noble metal co-catalysts into the COFs-based photocatalytic system is always indispensable. Herein, through a simple solvothermal synthesis method, TpPa-1-COF, a typical 2D COF, which displays a wide light absorption region, is rationally combined with transition metal phosphides (TMPs) to fabricate three TMPs/TpPa-1-COF hybrid materials, named Ni12 P5 (Ni2 P or CoP)/TpPa-1-COF. The incorporated TMPs can be served as electron collectors for accelerating the transfer of charges on TpPa-1-COF, thus the composites are demonstrated to be efficient photocatalysts for promoting water splitting. Benefitting from the richer surface reactive sites and lower H* formation energy barrier, the Ni12 P5 can most effectively improve the photocatalytic performance of the TpPa-1-COF, and the H2 evolution rate can reach up to 31.6 µmol h-1 , approximately 19 times greater than pristine TpPa-1-COF (1.65 µmol h-1 ), and is comparable to the Pt/TpPa-1-COF (38.8 µmol h-1 ). This work is the first example of combining COFs with TMPs to construct efficient photocatalysts, which may offer new insight for constructing noble-metal-free COF-based photocatalysts.

14.
Small ; 18(21): e2107680, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35481722

RESUMO

Charge carrier transport in materials is of essential importance for photovoltaic and photonic applications. Here, the authors demonstrate a controllable acceleration or deceleration of charge carrier transport in specially structured metal-alloy perovskite (MACs)PbI3 (MA= CH3 NH3 ) single-crystals with a gradient composition of CsPbI3 /(MA1- x Csx )PbI3 /MAPbI3 . Depending on the Cs-cation distribution in the structure and therefore the energy band alignment, two different effects are demonstrated: i) significant acceleration of electron transport across the depth driven by the gradient band alignment and suppression of electron-hole recombination, benefiting for photovoltaic and detector applications; and ii) decelerated electron transport and thus improved radiative carrier recombination and emission efficiency, highly beneficial for light and display applications. At the same time, the top Cs-layer results in hole localization in the top layer and surface passivation. This controllable acceleration and deceleration of electron transport is critical for various applications in which efficient electron-hole separation and suppressed nonradiative electron-hole recombination is demanded.

15.
Small ; 18(7): e2105668, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34877809

RESUMO

Herein, a BiOCl hydrogel film electrode featuring excellent photocorrosion and regeneration properties acts as the anode to construct a novel type of smart solar-metal-air batteries (SMABs), which combines the characteristics of solar cells (direct photovoltaic conversion) and metal-air batteries (electric energy storage and release interacting with atmosphere). The cyclic photocorrosion processes between BiOCl (Bi3+ ) and Bi can simply be achieved by solar light illumination and standing in the dark. Upon illumination, the device takes open-circuit configuration to charge itself from the sunlight. Notably, in this system, the converted solar energy can be stored in the SMABs without the need of external assistance. In the discharging process in the dark, Bi0 spontaneously turns back to Bi3+ producing electrons to induce the oxygen reduction reaction. With an illumination of 15 min, the battery with an electrode area of 1 cm2 can be continuously discharged for ≈3000 s. Taking elemental Bi as the calculation object, the theoretical capacity of the SMABs is 384.75 mAh g-1 , showing its potential application in energy storage. This novel type of SMABs is developed based on the unique photocorrosive and self-oxidation reaction of BiOCl to achieve photochemical energy generation and storage.

16.
Nano Lett ; 21(2): 1090-1095, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439662

RESUMO

Metamaterial-based perfect absorbers provide efficient ways for selective absorption of light with both linear or circular polarizations. Perfect absorption for an arbitrary polarization requires the development of subwavelength structures absorbing efficiently elliptically polarized light, but they remain largely unexplored. Here, we design and realize experimentally novel plasmonic metasurfaces for full-Stokes polarization perfect absorption in the mid-infrared. The metasurface unit cell consists of coupled anisotropic meta-atoms forming a diatomic metamolecule. The designed plasmonic metastructures provide a strong field enhancement by at least 1 order of magnitude higher than conventional perfect absorbers. In experiment, our plasmonic metasurfaces demonstrate sharp differentiation of spectral responses for an arbitrary pair of orthogonal polarization states (linear, circular, or elliptical) providing perfect absorption for one polarization with strong reflection for its counterpart. Our results suggest a novel route for efficient control of light polarization in metasurfaces offering numerous potential applications ranging from thermal imaging to chiral molecule detection.

17.
Nano Lett ; 21(20): 8917-8923, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34459611

RESUMO

Plasmonic metasurfaces supporting collective lattice resonances have attracted increasing interest due to their exciting properties of strong spatial coherence and enhanced light-matter interaction. Although the focusing of light by high-numerical-aperture (NA) objectives provides an essential way to boost the field intensities, it remains challenging to excite high-quality resonances by using high-NA objectives due to strong angular dispersion. Here, we address this challenge by employing the physics of bound states in the continuum (BICs). We design a novel anisotropic plasmonic metasurface combining a two-dimensional lattice of high-aspect-ratio pillars with a one-dimensional plasmonic grating, fabricated by a two-photon polymerization technique and gold sputtering. We demonstrate experimentally multiple resonances with absorption amplitudes exceeding 80% at mid-IR using an NA = 0.4 reflective objective. This is enabled by the weak angular dispersion of quasi-BIC resonances in such hybrid plasmonic metasurfaces. Our results suggest novel strategies for designing photonic devices that manipulate focused light with a strong field concentration.

18.
Angew Chem Int Ed Engl ; 61(29): e202204880, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35471594

RESUMO

When it comes to using solar energy to promote catalytic reactions, photocatalysis technology is the first choice. However, sunlight can not only be directly converted into chemical energy through a photocatalytic process, it can also be converted through different energy-transfer pathways. Using sunlight as the energy source, photocatalytic reactions can proceed independently, and can also be coupled with other catalytic technologies to enhance the overall catalytic efficiency. Therefore, sunlight-driven catalytic reactions are diverse, and need to be given a specific definition. We propose a timely perspective for catalytic reactions driven by sunlight and give them a specific definition, namely "solar energy catalysis". The concept of different types of solar energy catalysis, such as photocatalysis, photothermal catalysis, solar cell powered electrocatalysis, and pyroelectric catalysis, are highlighted. Finally, their limitations and future research directions are discussed.

19.
Angew Chem Int Ed Engl ; 61(19): e202200413, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166425

RESUMO

Synthesizing H2 O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small-scale. However, the poor activity and selectivity of the 2 e- water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2 O2 production. Herein we prepare a bipyridine-based covalent organic framework photocatalyst (denoted as COF-TfpBpy) for H2 O2 production from water and air. The solar-to-chemical conversion (SCC) efficiency at 298 K and 333 K is 0.57 % and 1.08 %, respectively, which are higher than the current reported highest value. The resulting H2 O2 solution is capable of degrading pollutants. A mechanistic study revealed that the excellent photocatalytic activity of COF-TfpBpy is due to the protonation of bipyridine monomer, which promotes the rate-determining reaction (2 e- WOR) and then enhances Yeager-type oxygen adsorption to accelerate 2 e- one-step oxygen reduction. This work demonstrates, for the first time, the COF-catalyzed photosynthesis of H2 O2 from water and air; and paves the way for wastewater treatment using photocatalytic H2 O2 solution.


Assuntos
Peróxido de Hidrogênio/síntese química , Estruturas Metalorgânicas , Oxigênio , Fotossíntese , Água
20.
Small ; 17(12): e2007311, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33634597

RESUMO

Graphene-based supercapacitors have been attracting growing attention due to the predicted intrinsic high surface area, high electron mobility, and many other excellent properties of pristine graphene. However, experimentally, the state-of-the-art graphene electrodes face limitations such as low surface area, low electrical conductivity, and low capacitance, which greatly limit their electrochemical performances for supercapacitor applications. To tackle these issues, hybridizing graphene with other species (e.g., atom, cluster, nanostructure, etc.) to enlarge the surface area, enhance the electrical conductivity, and improve capacitance behaviors are strongly desired. In this review, different hybridization principles (spacers hybridization, conductors hybridization, heteroatoms doping, and pseudocapacitance hybridization) are discussed to provide fundamental guidance for hybridization approaches to solve these challenges. Recent progress in hybridized graphene for supercapacitors guided by the above principles are thereafter summarized, pushing the performance of hybridized graphene electrodes beyond the limitation of pure graphene materials. In addition, the current challenges of energy storage using hybridized graphene and their future directions are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa