RESUMO
Mercury speciation is of significant importance in environmental and biological analysis because its toxicity and metabolic behavior in the human body differ among species. Nanomaterial-assisted optical sensors are widely used for mercury ion detection but rarely applied in mercury speciation analysis. In this work, we develop a novel colorimetric sensing strategy for mercury speciation based on mercury-stimulated peroxidase mimetic activity of gold nanoparticles with the assistance of different reductants. In the presence of a weak reductant, only inorganic mercury can be reduced to Hg0, whereas both inorganic mercury and organic mercury can be reduced to Hg0 in the presence of a strong reductant. Due to the high affinity between Hg and Au, Hg0 deposits on the AuNP surface in the form of a Au-Hg amalgam, leading to a remarkable enhancement of peroxidase mimetic activity of gold nanoparticles. On the basis of this effect, inorganic mercury and total mercury can be detected by using 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate. The limits of detection for inorganic mercury and total mercury are 1.9 and 0.9 nM within 5-100 nM, respectively. The selectivity of this sensing system is high due to the specificity of Au-Hg interaction. Its practical applications are further demonstrated by organic mercury analysis in a fish sample and mercury speciation in a human hair sample.
Assuntos
Mercúrio , Nanopartículas Metálicas , Colorimetria , Ouro , Humanos , Mercúrio/toxicidade , Nanopartículas Metálicas/toxicidade , PeroxidasesRESUMO
A novel sensor array based on a (+)AuNP/AuNC nanocomposite was constructed for the selective discrimination of 10 types of Gram-negative bacteria (including 3 types of antibiotic-resistant strains) at a low concentration level of OD600 = 0.015. By recognizing the triple optical patterns of Gram-negative bacteria with the assistance of LDA, the sensor array is able to group the bacteria with respect to their species to each other.