Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.018
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2703-2716.e23, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657602

RESUMO

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.


Assuntos
Imunidade Inata , Imunoterapia , Células Matadoras Naturais , Neoplasias , Animais , Feminino , Humanos , Camundongos , Apresentação de Antígeno , Linhagem Celular Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia
2.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392959

RESUMO

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Assuntos
Adenina/análogos & derivados , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioblastoma/patologia , Adenina/análise , Adenina/química , Adulto , Idoso , Homólogo AlkB 1 da Histona H2a Dioxigenase/antagonistas & inibidores , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Hipóxia Celular , Criança , Epigenômica , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
EMBO J ; 43(3): 437-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228917

RESUMO

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Ativação Transcricional , Nucleotidiltransferases/metabolismo , Complexo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
4.
Immunity ; 51(3): 491-507.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533057

RESUMO

Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Homeodomínio/imunologia , Mitocôndrias/imunologia , Animais , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia
5.
Cell ; 152(1-2): 82-96, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23313552

RESUMO

The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , MicroRNAs/genética , Neurônios/citologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Animais , Linhagem Celular , Linhagem da Célula , Regulação para Baixo , Humanos , Camundongos , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Splicing de RNA , Sinapses
6.
Nature ; 603(7903): 934-941, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35130560

RESUMO

Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Gangliosídeos , Glioma , Histonas , Imunoterapia Adotiva , Mutação , Receptores de Antígenos Quiméricos , Astrocitoma/genética , Astrocitoma/imunologia , Astrocitoma/patologia , Astrocitoma/terapia , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/imunologia , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/terapia , Criança , Gangliosídeos/imunologia , Perfilação da Expressão Gênica , Glioma/genética , Glioma/imunologia , Glioma/patologia , Glioma/terapia , Histonas/genética , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/imunologia , Neoplasias da Medula Espinal/patologia , Neoplasias da Medula Espinal/terapia
7.
Nat Methods ; 20(10): 1563-1572, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723244

RESUMO

Fluorescent RNAs, aptamers that bind and activate small fluorogenic dyes, have provided a particularly attractive approach to visualizing RNAs in live cells. However, the simultaneous imaging of multiple RNAs remains challenging due to a lack of bright and stable fluorescent RNAs with bio-orthogonality and suitable spectral properties. Here, we develop the Clivias, a series of small, monomeric and stable orange-to-red fluorescent RNAs with large Stokes shifts of up to 108 nm, enabling the simple and robust imaging of RNA with minimal perturbation of the target RNA's localization and functionality. In combination with Pepper fluorescent RNAs, the Clivias enable the single-excitation two-emission dual-color imaging of cellular RNAs and genomic loci. Clivias can also be used to detect RNA-protein interactions by bioluminescent imaging both in live cells and in vivo. We believe that these large Stokes shift fluorescent RNAs will be useful tools for the tracking and quantification of multiple RNAs in diverse biological processes.


Assuntos
Aptâmeros de Nucleotídeos , Corantes Fluorescentes , RNA , Microscopia de Fluorescência , Aptâmeros de Nucleotídeos/genética
9.
Blood ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848533

RESUMO

The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, that translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and BMP6 treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver non-heme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe-/- mice). In summary, our study identifies Foxo1 is a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.

10.
Nat Chem Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783134

RESUMO

Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.

11.
J Biol Chem ; 300(6): 107371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750791

RESUMO

The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.


Assuntos
Cisteína , Cisteína/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bilophila/metabolismo , Bilophila/enzimologia , Racemases e Epimerases/metabolismo , Oxirredução , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Sulfitos/metabolismo , Humanos
12.
J Biol Chem ; 300(3): 105721, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311175

RESUMO

Histone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf. The transcription factor TDRD3 is the downstream effector of H3Y99sulf-H4R3me2a axis in HCC. It reads and co-localizes with the H3Y99sulf-H4R3me2a dual mark in the promoter regions of HIF1A and PDK1 to regulate gene transcription. Depletion of SULT1B1 can effectively reduce the occurrence of H3Y99sulf-H4R3me2a-TDRD3 axis in gene promoter regions and lead to downregulation of targeted gene transcription. Hypoxia-inducible factor 1-alpha and PDK1 are master regulators for hypoxic responses and cancer metabolism. Disruption of the H3Y99sulf-H4R3me2a-TDRD3 axis can inhibit the expression and functions of hypoxia-inducible factor 1-alpha and PDK1, resulting in suppressed proliferation, tumor growth, and survival of HCC cells suffering hypoxia stress. The present study extends the regulatory and functional mechanisms of H3Y99sulf and improves our understanding of its role in cancer biology.


Assuntos
Carcinoma Hepatocelular , Histonas , Neoplasias Hepáticas , Tirosina , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Tirosina/metabolismo
13.
Plant J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981025

RESUMO

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.

14.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268487

RESUMO

MOTIVATION: Utilizing both purebred and crossbred data in animal genetics is widely recognized as an optimal strategy for enhancing the predictive accuracy of breeding values. Practically, the different genetic background among several purebred populations and their crossbred offspring populations limits the application of traditional prediction methods. Several studies endeavor to predict the crossbred performance via the partial relationship, which divides the data into distinct sub-populations based on the common genetic background, such as one single purebred population and its corresponding crossbred descendant. However, this strategy makes prediction inaccurate due to ignoring half of the parental information of crossbreed animals. Furthermore, dominance effects, although playing a significant role in crossbreeding systems, cannot be modeled under such a prediction model. RESULTS: To overcome this weakness, we developed a novel multi-breed single-step model using metafounders to assess ancestral relationships across diverse breeds under a unified framework. We proposed to use multi-breed dominance combined relationship matrices to model additive and dominance effects simultaneously. Our method provides a straightforward way to evaluate the heterosis of crossbreeds and the breeding values of purebred parents efficiently and accurately. We performed simulation and real data analyses to verify the potential of our proposed method. Our proposed model improved prediction accuracy under all scenarios considered compared to commonly used methods. AVAILABILITY AND IMPLEMENTATION: The software for implementing our method is available at https://github.com/CAU-TeamLiuJF/MAGE.


Assuntos
Genoma , Hibridização Genética , Animais , Genômica/métodos , Simulação por Computador , Software , Modelos Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único , Fenótipo
15.
Am J Pathol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069170

RESUMO

Remote ischemic preconditioning (RIPC) exerts a protective role on myocardial ischemia/reperfusion (I/R) injury by the release of various humoral factors. Lactate is a common metabolite in ischemic tissues. Nevertheless, little is known about the role lactate plays in myocardial I/R injury and its underlying mechanism. This investigation revealed that RIPC elevated the level of lactate in blood and myocardium. Furthermore, AZD3965, a selective monocarboxylate transporter 1 inhibitor, and 2-deoxy-d-glucose, a glycolysis inhibitor, mitigated the effects of RIPC-induced elevated lactate in the myocardium and prevented RIPC against myocardial I/R injury. In an in vitro hypoxia/reoxygenation model, lactate markedly mitigated hypoxia/reoxygenation-induced cell damage in H9c2 cells. Meanwhile, further studies suggested that lactate contributed to RIPC, rescuing I/R-induced autophagy deficiency by promoting transcription factor EB (TFEB) translocation to the nucleus through activating the AMPK-mammalian target of rapamycin (mTOR) pathway without influencing the phosphatidylinositol 3-kinase-Akt pathway, thus reducing cardiomyocyte damage. Interestingly, we also found that lactate up-regulated the mRNA and protein expression of connexin 43 (CX43) by facilitating the binding of TFEB to CX43 promoter in the myocardium. Functionally, silencing of TFEB attenuated the protective effect of lactate on cell damage, which was reversed by overexpression of CX43. Further mechanistic studies suggested lactate facilitated CX43-regulated autophagy via the AMPK-mTOR-TFEB signaling pathway. Collectively, our research demonstrates that RIPC protects against myocardial I/R injury through lactate-mediated myocardial autophagy via the AMPK-mTOR-TFEB-CX43 axis.

16.
Hepatology ; 79(2): 425-437, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611260

RESUMO

BACKGROUND AND AIMS: The predominantly progressive, indeterminate, and predominantly regressive (P-I-R) classification extends beyond staging and provides information on dynamic changes of liver fibrosis. However, the prognostic implication of P-I-R classification is not elucidated. Therefore, in the present research, we investigated the utility of P-I-R classification in predicting the on-treatment clinical outcomes. APPROACH AND RESULTS: In an extension study on a randomized controlled trial, we originally enrolled 1000 patients with chronic hepatitis B and biopsy-proven histological significant fibrosis, and treated them for more than 7 years with entecavir-based therapy. Among the 727 patients with a second biopsy at treatment week 72, we compared P-I-R classification and Ishak score changes in 646 patients with adequate liver sections for the histological evaluation. Progressive, indeterminate, and regressive cases were observed in 70%, 17%, and 13% of patients before treatments and 20%, 14%, and 64% after 72-week treatment, respectively, which could further differentiate the histological outcomes of patients with stable Ishak scores. The 7-year cumulative incidence of HCC was 1.5% for the regressive cases, 4.3% for the indeterminate cases, and 22.8% for the progressive cases ( p <0.001). After adjusting for age, treatment regimen, platelet counts, cirrhosis, Ishak fibrosis score changes, and Laennec staging, the posttreatment progressive had a HR of 17.77 (vs. posttreatment regressive; 95% CI: 5.55-56.88) for the incidence of liver-related events (decompensation, HCC, and death/liver transplantation). CONCLUSIONS: The P-I-R classification can be a meaningful complement to the Ishak fibrosis score not only in evaluating the histological changes but also in predicting the clinical outcomes.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Antivirais/uso terapêutico , Neoplasias Hepáticas/patologia , Cirrose Hepática/patologia , Fígado/patologia , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/patologia , Fibrose , Biópsia/efeitos adversos
17.
Plant Physiol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074204

RESUMO

Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from nine PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana (N. benthamiana) transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.

18.
Am J Respir Crit Care Med ; 209(10): 1246-1254, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190702

RESUMO

Rationale: Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial (NTM) pulmonary disease (PD), which exhibits increasing global incidence. Current microbiologic methods routinely used in clinical practice lack sensitivity and have long latencies, leading to delays in diagnosis and treatment initiation and evaluation. A clustered regularly interspaced short palindromic repeats (CRISPR)-based assay that measures MAC cell-free DNA (cfDNA) concentrations in serum could provide a rapid means to detect MAC infection and monitor response to antimicrobial treatment. Objectives: To develop and optimize a CRISPR MAC assay for MAC infection detection and to evaluate its diagnostic and prognostic performance in two MAC disease cohorts. Methods: MAC cfDNA serum concentrations were measured in individuals with diagnoses of MAC disease or who had bronchiectasis or chronic obstructive pulmonary disease diagnoses without histories of NTM PD or NTM-positive sputum cultures. Diagnostic performance was analyzed using pretreatment serum from two cohorts. Serum MAC cfDNA changes during MAC PD treatment were evaluated in a subset of patients with MAC PD who received macrolide-based multidrug regimens. Measurements and Main Results: The CRISPR MAC assay detected MAC cfDNA in MAC PD with 97.6% (91.6-99.7%) sensitivity and 97.6% (91.5-99.7%) specificity overall. Serum MAC cfDNA concentrations markedly decreased after MAC-directed treatment initiation in patients with MAC PD who demonstrated MAC culture conversion. Conclusions: This study provides preliminary evidence for the utility of a serum-based CRISPR MAC assay to rapidly detect MAC infection and monitor the response to treatment.


Assuntos
Ácidos Nucleicos Livres , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Humanos , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Infecção por Mycobacterium avium-intracellulare/sangue , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Feminino , Masculino , Ácidos Nucleicos Livres/sangue , Complexo Mycobacterium avium/genética , Complexo Mycobacterium avium/isolamento & purificação , Idoso , Pessoa de Meia-Idade , DNA Bacteriano/sangue , DNA Bacteriano/análise , Sensibilidade e Especificidade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Estudos de Coortes , Antibacterianos/uso terapêutico
19.
Nano Lett ; 24(27): 8418-8426, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934472

RESUMO

Optical multiplexing technology plays a crucial role in various fields such as data storage, anti-counterfeiting, and time-resolved biological imaging. Nevertheless, employing single-wavelength phosphorescence for multiplexing often results in spectral overlap among the emission peaks of various channels, which can precipitate crosstalk and misinterpretation in the information-decoding process, thereby compromising the integrity and precision of the encrypted data. This paper proposes a time-divided colorful multiplexing technology based on phosphorescent carbon nanodots with different colors and lifetimes. Using different luminescence colors to symbolize varying information levels helps achieve multitiered information encryption and storage. By modulation of the lifetime and the emission wavelength, intricate information can be encoded, thereby enhancing the intricacy and security of the encryption mechanism. By assigning different data bits to each color, more information can be encoded in the same physical space. This method enables higher-density information storage and fortifies encryption, ensuring the compactness and security of information.

20.
J Proteome Res ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39067049

RESUMO

Although seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function, little is known about their metabolite compositions and roles in sperm motility. Here, we performed metabolomics and proteomics analysis of boar SPEVs with high or low sperm motility to investigate specific biomarkers affecting sperm motility. In total, 140 proteins and 32 metabolites were obtained through differentially expressed analysis and weighted gene coexpression network analysis (WGCNA). Seven differentially expressed proteins (DEPs) (ADIRF, EPS8L1, PRCP, CD81, PTPRD, CSK, LOC100736569) and six differentially expressed metabolites (DEMs) (adenosine, beclomethasone, 1,2-benzenedicarboxylic acid, urea, 1-methyl-l-histidine, and palmitic acid) were also identified in WGCNA significant modules. Joint pathway analysis revealed that three DEPs (GART, ADCY7, and NTPCR) and two DEMs (urea and adenosine) were involved in purine metabolism. Our results suggested that there was significant correlation between proteins and metabolites, such as IL4I1 and urea (r = 0.86). Furthermore, we detected the expression level of GART, ADCY7, and CDC42 in sperm of two groups, which further verified the experimental results. This study revealed that several proteins and metabolites in SPEVs play important roles in sperm motility. Our results offered new insights into the complex mechanism of sperm motility and identified potential biomarkers for male reproductive diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa