Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(34): 10451-10457, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39133810

RESUMO

In great contrast to the numerous discoveries of superconductivity in layer-stacked graphene systems, the absence of superconductivity in the simplest monolayer graphene remains quite puzzling. Here, through realistic computation of the electronic structure, we identify a systematic trend that superconductivity emerges only upon alteration of the low-energy electronic lattice from the underlying honeycomb atomic structure. We then demonstrate that this inhibition can result from geometric frustration of the bond lattice that disables the quantum phase coherence of the order parameter residing on it. In comparison, upon deviation from the honeycomb lattice, relief of geometric frustration allows robust superfluidity with nontrivial spatial structures. For the specific examples of bilayer and trilayer graphene under an external electric field, such a bond-centered order parameter would develop superfluidity with staggered flux that breaks the time-reversal symmetry. Our study also suggests the possible realization of the long-sought superconductivity in single-layer graphene via the application of unidirectional strain.

2.
Phys Rev Lett ; 132(12): 126503, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579234

RESUMO

Beyond 14 GPa of pressure, bilayered La_{3}Ni_{2}O_{7} was recently found to develop strong superconductivity above the liquid nitrogen boiling temperature. An immediate essential question is the pressure-induced qualitative change of electronic structure that enables the exciting high-temperature superconductivity. We investigate this timely question via a numerical multiscale derivation of effective many-body physics. At the atomic scale, we first clarify that the system has a strong charge transfer nature with itinerant carriers residing mainly in the in-plane oxygen between spin-1 Ni^{2+} ions. We then elucidate in electron-volt scale and sub-electron-volt scale the key physical effect of the applied pressure: it induces a cupratelike electronic structure via fractionalizing the Ni ionic spin from 1 to 1/2. This suggests a high-temperature superconductivity in La_{3}Ni_{2}O_{7} with microscopic mechanism and (d-wave) symmetry similar to that in the cuprates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa