Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Microbiol ; 20(Suppl 1): 83, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32321427

RESUMO

BACKGROUND: The human gut microbiome plays a critical role in the carcinogenesis of colorectal cancer (CRC). However, a comprehensive analysis of the interaction between the host and microbiome is still lacking. RESULTS: We found correlations between the change in abundance of microbial taxa, butyrate-related colonic metabolites, and methylation-associated host gene expression in colonic tumour mucosa tissues compared with the adjacent normal mucosa tissues. The increase of genus Fusobacterium abundance was correlated with a decrease in the level of 4-hydroxybutyric acid (4-HB) and expression of immune-related peptidase inhibitor 16 (PI16), Fc Receptor Like A (FCRLA) and Lymphocyte Specific Protein 1 (LSP1). The decrease in the abundance of another potentially 4-HB-associated genus, Prevotella 2, was also found to be correlated with the down-regulated expression of metallothionein 1 M (MT1M). Additionally, the increase of glutamic acid-related family Halomonadaceae was correlated with the decreased expression of reelin (RELN). The decreased abundance of genus Paeniclostridium and genus Enterococcus were correlated with increased lactic acid level, and were also linked to the expression change of Phospholipase C Beta 1 (PLCB1) and Immunoglobulin Superfamily Member 9 (IGSF9) respectively. Interestingly, 4-HB, glutamic acid and lactic acid are all butyrate precursors, which may modify gene expression by epigenetic regulation such as DNA methylation. CONCLUSIONS: Our study identified associations between previously reported CRC-related microbial taxa, butyrate-related metabolites and DNA methylation-associated gene expression in tumour and normal colonic mucosa tissues from CRC patients, which uncovered a possible mechanism of the role of microbiome in the carcinogenesis of CRC. In addition, these findings offer insight into potential new biomarkers, therapeutic and/or prevention strategies for CRC.


Assuntos
Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Metaboloma , Proteína Reelina , Transcriptoma
2.
Appl Microbiol Biotechnol ; 104(13): 5915-5928, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32367312

RESUMO

The gut microbiota plays an important role in colorectal cancer (CRC), and the use of probiotics might be a promising intervention method. The aim of our study was to investigate the beneficial effect of Bifidobacterium bifidum CGMCC 15068 on an azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated CRC (CAC) mouse model. CAC was induced by an intra-peritoneal injection of AOM (10 mg/kg) and three 7-day cycles of 2% DSS in drinking water with a 14-day recovery period between two consecutive DSS administrations. B. bifidum CGMCC 15068 (3 × 109 CFU/mL) was gavaged once daily during the recovery period. Then, the faecal microbial composition and metabolome were profiled using the 16S rRNA sequencing technology and gas chromatography-mass spectrometry (GC-MS), respectively. The administration of B. bifidum CGMCC 15068 attenuated tumourigenesis in the CAC mouse model. In addition, B. bifidum CGMCC 15068 pre-treatment increased the relative abundance of Akkermansia, Desulfovibrionaceae, Romboutsia, Turicibacter, Verrucomicrobiaceae, Ruminococcaceae_UCG_013, Lachnospiraceae_UCG_004, and Lactobacillus. Meanwhile, B. bifidum CGMCC 15068 altered metabolites involved in the citrate cycle (TCA cycle), glycolysis, butyrate metabolism, fatty acid biosynthesis, and galactose metabolism. Several significant correlations were identified between the differentially abundant microbes and metabolites. These findings supported the beneficial role of B. bifidum CGMCC 15068 in intestinal health by modulating dysbiosis and the gut metabolic profile. The manipulation of the gut microbial composition using probiotics might be a promising prevention strategy for CRC. Long-term and large-scale clinical trials are warranted for the potential clinical applications of this strategy in the future.


Assuntos
Bifidobacterium bifidum/fisiologia , Neoplasias Associadas a Colite/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fezes/química , Fezes/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/farmacologia
3.
Med Sci Monit ; 26: e920711, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32148334

RESUMO

BACKGROUND The suicide risk of patients with cancer is higher than the general population. Our research aimed to explore the Surveillance, Epidemiology, and End Results (SEER) database to define incidence and quest risk factors for death of suicide in patients with Kaposi's sarcoma (KS) in the United States (US). MATERIAL AND METHODS We screened KS patients without human immunodeficiency virus status in the SEER database from 1980 to 2016, calculated the standardized mortality ratios of them by comparing the rates with those of the US general population from 1980 to 2016, and identified relevant suicide risk factors by univariable and multivariable logistic regression analyses. RESULTS The suicide rates of KS patients and US general population were 115.31 (110 suicides among 21 405 patients) and 15.1 per 100 000 person-years, respectively, thus the standardized mortality ratio was 7.64 (95% confidence interval [CI], 6.28-9.21). The multivariate analysis showed that black race (versus white race, hazard ratio [HR]: 0.43, 95% CI: 0.21-0.89, P=0.022), advanced age at diagnosis (≥55 years versus 18-44 years, HR: 0.31, 95% CI: 0.14-0.66, P=0.002), and chemotherapy (versus no chemotherapy, HR: 0.60, 95% CI: 0.37-0.96, P=0.032) were protective factors for suicide among KS patients. CONCLUSIONS Clinicians and caregivers can apply our findings to identify KS patients with high suicide risk characteristics (white race, age of 18-44 years, non-chemotherapy) and exert timely interventions during patient diagnosis, treatment, and follow-up to reduce the suicide rate in this population.


Assuntos
Sarcoma de Kaposi/psicologia , Suicídio , Adolescente , Adulto , Fatores Etários , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Programa de SEER , Sarcoma de Kaposi/tratamento farmacológico , Estados Unidos , População Branca , Adulto Jovem
4.
Appl Microbiol Biotechnol ; 103(1): 375-393, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30345482

RESUMO

Acute liver failure is a drastic, unpredictable clinical syndrome with high mortality. Various preventive and adjuvant therapies based on modulating the gut flora have been proposed for hepatic injury. We aimed to explore the preventive and therapeutic effects of Bifidobacterium adolescentis CGMCC15058 on rat liver failure, as well as the potential microecological and immunological mechanisms of those effects. B. adolescentis CGMCC15058 (3 × 109 CFU), isolated from healthy human stool, was gavaged to Sprague-Dawley rats for 14 days. Acute liver injury was induced on the 15th day by intraperitoneal injection of D-galactosamine. After 24 h, liver and terminal ileum histology, liver function, plasma cytokines, bacterial translocation and gut microbiota composition were assessed. We found that pretreatment with B. adolescentis significantly relieved elevated serum levels of alanine aminotransferase (ALT), total bile acid and lipopolysaccharide-binding protein and enhanced the expression of mucin 4 and the tight junction protein zonula occludens-1. B. adolescentis exhibited anti-inflammatory properties as indicated by decreased levels of mTOR and the inflammatory cytokines TNF-α and IL-6, as well as elevated levels of the anti-inflammatory cytokine interleukins-10 in the liver. Similar anti-inflammatory signs were also found in plasma. B. adolescentis significantly altered the microbial community, depleting the common pathogenic taxon Proteus and markedly enriching the taxa Coriobacteriaceae, Bacteroidales and Allobaculum, which are involved in regulating the metabolism of lipids and aromatic amino acids. Our findings not only suggest B. adolescentis acts as a prospective probiotic against liver failure but also provide new insights into the prevention and treatment of liver disease.


Assuntos
Bifidobacterium adolescentis , Doença Hepática Induzida por Substâncias e Drogas/terapia , Microbioma Gastrointestinal/fisiologia , Intestinos/fisiologia , Proteínas de Fase Aguda , Animais , Bifidobacterium adolescentis/isolamento & purificação , Proteínas de Transporte/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Citocinas/sangue , Disbiose/microbiologia , Disbiose/terapia , Fezes/microbiologia , Galactosamina/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Humanos , Fígado/patologia , Masculino , Glicoproteínas de Membrana/sangue , Ratos Sprague-Dawley
5.
Appl Microbiol Biotechnol ; 103(23-24): 9673-9686, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31713675

RESUMO

The liver is an important digestive gland, and acute liver failure results in high mortality. Probiotics are considered potential adjuvant therapies for liver disease. This study aimed to investigate the beneficial effects of Lactobacillus helveticus R0052 on acute liver injury and the underlying mechanisms. Sprague-Dawley rats were gavaged with L. helveticus R0052 suspensions (3 × 109 CFU) for 1 week. Subsequently, acute liver injury was induced by intraperitoneal D-galactosamine injection on the eighth day. After 24 h, samples (blood, liver, ileum, faeces) were collected and assessed for histological injury, inflammation, intestinal barrier, gut microbiome and metabolome. L. helveticus R0052 alleviated aminotransferase, bilirubin and total bile acid elevation and histological hepatic injuries. Additionally, L. helveticus R0052 exhibited anti-inflammatory properties by downregulating Toll-like receptors, tumour necrosis factor-α and nuclear factor-κb transcription in liver samples and decreasing proinflammatory cytokine plasma concentrations. Additionally, L. helveticus R0052 ameliorated intestinal abnormalities and regulated Toll-like receptors, claudin2 and mucin3 gene transcription in the intestine. These effects were associated with gut microbiome and metabolome modulation by L. helveticus R0052. Probiotic pretreatment enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. helveticus R0052 improved carbohydrate and fatty acid metabolism and reduced lithocholic acid levels. These results indicate that L. helveticus R0052 is promising for alleviating acute liver injury and provide new insights regarding the correlations among the microbiome, the metabolome, the intestinal barrier and liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Galactosamina/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus helveticus/fisiologia , Metaboloma/efeitos dos fármacos , Probióticos/uso terapêutico , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/sangue , Fezes/química , Fezes/microbiologia , Galactosamina/administração & dosagem , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/fisiopatologia , Masculino , Probióticos/administração & dosagem , Probióticos/farmacologia , Ratos , Ratos Sprague-Dawley
6.
Free Radic Biol Med ; 203: 11-23, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37003500

RESUMO

Acetaminophen (APAP) overdose is the most common driver of drug-induced liver injury (DILI) worldwide, and the gut microbiome plays a crucial role in this process. In this study, we estimated the effect of Bifidobacterium longum R0175 on APAP-induced liver injury in mice and discovered that B. longum R0175 alleviated liver injury by diminishing inflammation, reducing oxidative stress levels, inhibiting hepatocyte death and improving APAP-induced microbiome dysbiosis. Further studies revealed that the antioxidative effects of B. longum R0175 were primarily due to activation of the Nrf2 pathway, which was supported by the Nrf2 pathway inhibitor ML385 counteracting these ameliorative effects. B. longum R0175 modified intestinal metabolites, especially the key metabolite sedanolide, which could activate the Nrf2 pathway and contribute to the protective effects against APAP-induced liver injury. Moreover, we found that sedanolide exhibited close interrelationships with specific microbial taxa, indicating that this factor may be derived from gut microbes. In conclusion, our work demonstrated that B. longum R0175 could reduce oxidative damage, inflammation and hepatocyte death by activating the Nrf2 pathway. Importantly, we identified the microbiota-derived metabolite sedanolide, which was first discovered in the mouse intestine, as a key agonist of the Nrf2 pathway and primary effector of B. longum R0175 in APAP challenge. These findings provide new perspectives for APAP overdose therapy and demonstrate the enormous potential of B. longum R0175 in alleviating acute liver injury.


Assuntos
Bifidobacterium longum , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Acetaminofen/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Bifidobacterium longum/genética , Fígado/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
7.
Microbiol Spectr ; 10(5): e0171722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972273

RESUMO

Autoimmune hepatitis (AIH) is a progressive inflammation-associated liver injury. Pyroptosis is a novel inflammatory programmed cell death wherein gasdermin D (GSDMD) serves as the executioner. Our work challenged Gsdmd-/- mice with concanavalin A (ConA) to try to unveil the actual role of GSDMD in AIH. After ConA injection, Gsdmd-/- mice exhibited more severe liver damage characterized by a lower survival rate, more extensive hepatocyte necrosis and apoptosis, and higher serum transaminase levels, indicating the protection of GSDMD in ConA-induced AIH. Furthermore, the Gsdmd-/- mice exhibited higher hepatic expression and serum levels of inflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-17A [IL-17A]) and more infiltration of macrophages and neutrophils after ConA treatment than did wild-type (WT) mice. Gsdmd-/- mice with AIH showed increased hepatic l-glutamine levels but decreased glycerophospholipid metabolites levels. L-glutamine levels showed positive correlations while glycerophospholipid metabolites showed negative associations with liver injury indexes and inflammation markers. We further observed a destroyed intestinal barrier in Gsdmd-/- mice after ConA injection as indicated by decreased transcriptional expressions of Tjp1, Ocln, Reg3g, and Muc2. ConA-treated Gsdmd-/- mice also exhibited higher serum LPS binding protein (LBP) concentrations and hepatic Tlr4 and Cd14 mRNA levels. Further fecal 16S rRNA gene sequencing demonstrated decreased relative abundances of Lactobacillus and Roseburia but increased relative abundances of Allobaculum and Dubosiella in Gsdmd-/- mice with AIH. Lactobacillus was negatively correlated with liver injury and inflammation indexes and positively associated with Ocln, Muc2, and Reg3g levels. Allobaculum was positively related to liver injury and inflammatory cytokines and negatively correlated with gut barrier indexes. IMPORTANCE Our study provides the first direct clues to the protective role of gasdermin D (GSDMD) in autoimmune hepatitis (AIH). We demonstrated that Gsdmd knockout exacerbated concanavalin A (ConA)-induced AIH in mice. It may be due to the destroyed intestinal barrier and changes in certain intestinal microbes and hepatic metabolites resulting in increased liver injury and inflammation in ConA-treated Gsdmd-/- mice. This finding suggested a nonnegligible role of GSDMD in AIH and also confirmed its physiological nonpyroptosis effects on the host. The role of GSDMD in autoimmune liver diseases or other liver diseases is complex and intriguing, deserving deep investigation.


Assuntos
Hepatite Autoimune , Animais , Camundongos , Concanavalina A/toxicidade , Glutamina/metabolismo , Glicerofosfolipídeos/metabolismo , Hepatite Autoimune/genética , Hepatite Autoimune/patologia , Inflamação/metabolismo , Interferon gama , Interleucina-17/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo , Transaminases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Microbiol ; 13: 932047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312913

RESUMO

The bidirectional relationship between colorectal cancer (CRC) and the gut microbiome has been well-documented. Here, we investigated the impact of Akkermansia muciniphila-mediated post-antibiotic gut microbial reconstitution on the development of colitis-associated CRC (CAC). The results showed that post-antibiotic replenishment of A. muciniphila worsened the tumorigenesis of CAC as indicated by increased number of large (>2 mm in diameter) tumors and both average and total tumor diameters. Measures of intestinal barrier function showed that post-antibiotic A. muciniphila gavage damaged the intestinal barrier as reflected by lower transcriptional levels of Tjp1, Ocln, Cdh1, and MUC2. Impaired gut barrier was followed by lipopolysaccharides (LPS) translocation as indicated by higher level of serum LPS-binding protein (LBP). The increased colonic mRNA levels of Il1b, Il6, and Tnfa and serum levels of IL-1ß, IL-6, and TNF-α indicated that post-antibiotic A. muciniphila replenishment resulted in overactivated inflammatory environment in CAC. The analysis of the evolution of the microbial community during the progression of CAC showed that post-antibiotic supplementation of A. muciniphila led to a distinct microbial configuration when compared with other treatments characterized by enriched Firmicutes, Lachnospiraceae, and Ruminococcaceae, and depleted Bacteroidetes, which was accompanied by higher Firmicutes/Bacteroidetes (F/B) ratio. Furthermore, post-antibiotic A. muciniphila administration changed the bile acid (BA) metabolic profile as indicated by decreased concentrations of secondary BA (SBA), ω-murocholic acid (ωMCA), and murocholic acid (muroCA). In addition, the A. muciniphila supplementation after antibiotic pretreatment also impacted the metabolism of short-chain fatty acids (SCFAs) as evidenced by increased concentrations of acetic acid, propionic acid, butyric acid, and valeric acid. Our study surprisingly observed that A. muciniphila-mediated post-antibiotic reconstitution of the gut microbiota aggravated the CAC in mice. It might exert its effect by damaging the gut barrier, exacerbating inflammatory responses, disrupting the post-antibiotic recovery of the microbial community, and further influencing the metabolism of BA and SCFAs. These findings indicated that maintaining the homeostasis of intestinal microorganisms is more crucial to health than replenishing a single beneficial microbe, and probiotics should be used with caution after antibiotic treatment.

9.
Front Microbiol ; 13: 841920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663882

RESUMO

Clostridioides difficile is a common cause of nosocomial infection. Antibiotic-induced dysbiosis in the intestinal microbiota is a core cause of C. difficile infection (CDI). Akkermansia muciniphila plays an active role in maintaining gastrointestinal balance and might offer the protective effects on CDI as probiotics. Here, we investigated the effects and mechanisms of A. muciniphila on CDI. C57BL/6 mice (n = 29) were administered A. muciniphila Muc T (3 × 109 CFUs, 0.2 mL) or phosphate-buffered saline (PBS) by oral gavage for 2 weeks. Mice were pretreated with an antibiotic cocktail and subsequently challenged with the C. difficile strain VPI 10463. A. muciniphila treatment prevented weight loss in mice and reduced the histological injury of the colon. And it also alleviated inflammation and improved the barrier function of the intestine. The administration effects of A. muciniphila may be associated with an increase in short-chain fatty acid production and the maintenance of bile acids' steady-state. Our results provide evidence that administration of A. muciniphila to CDI mice, with an imbalance in the microbial community structure, lead to a decrease in abundance of members of the Enterobacteriaceae and Enterococcaceae. In short, A. muciniphila shows a potential anti-CDI role by modulating gut microbiota and the metabolome.

10.
Food Funct ; 12(20): 10210-10225, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34542110

RESUMO

Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease with a high incidence. Multiple factors including dietary composition contribute to its occurrence. Recently, ketogenic diet which consists of a high proportion of fat and low carbohydrates has gained great popularity. Our study is aimed to explore the effect of ketogenic diet on IBD and its potential mechanisms. C57BL/6 mice were given a ketogenic diet or a control diet for a month and IBD was induced by 2% DSS in drinking water in the last week. Gut histology, inflammatory cytokines and chemokines, gut microbiota and metabolism were assessed. Ketogenic diet substantially worsened colitis, in terms of higher body weight loss, DAI scores and histological scores as well as colon length shortening. Levels of serum and colon inflammatory cytokines and chemokines (IL-1α, IL-6, TNF-α, IL-17, GM-CSF and IL-10) were significantly up-regulated in mice treated with ketogenic diet and DSS. Increased intestinal permeability and decreased expressions of intestinal epithelial barrier associated genes were observed due to ketogenic diet administration. Pretreatment with ketogenic diet alters the bacterial abundance, increasing pathogenic taxa such as Proteobacteria, Enterobacteriaceae, Helicobacter and Escherichia-Shigella and decreasing potential beneficial taxa such as Erysipelotrichaceae. Ketogenic diet also modified gut metabolism, increasing metabolites in the bile secretion such as ouabain, taurochenodeoxycholic acid, quinine, cholic acid and glycocholic acid, and decreasing metabolites associated with the biosynthesis of unsaturated fatty acids including stearic acid, arachidic acid, erucic acid, and docosanoic acid. These results suggest that ketogenic diet aggravates DSS-induced colitis in mice by increasing intestinal and systemic inflammation, and disrupting the intestinal barrier, which results from modulated gut microbiota and metabolism.


Assuntos
Colite/metabolismo , Dieta Cetogênica/efeitos adversos , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Animais , Quimiocinas/metabolismo , Colite/patologia , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Dieta/métodos , Dieta Cetogênica/métodos , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade
11.
Mol Nutr Food Res ; 65(7): e2000811, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458949

RESUMO

SCOPE: The high-fat, high-sucrose, and low-fiber Western diet (WD) is popular in many countries and affects the onset and progression of many diseases. This study is aimed to explore the influence of the WD on chronic liver disease (CLD) and its possible mechanism. METHODS AND RESULTS: C57BL/6 mice are given a control diet (CD) or WD and CLD is induced by intraperitoneally injecting carbon tetrachloride (CCL4 ) twice a week for 8 weeks. The WD aggravated CCL4 -induced chronic liver injury, as evidenced by increased serum transaminase levels, worsened hepatic inflammatory response, and fibrosis. Gut microbiota is disturbed in mice treated with CCL4 +WD (WC group), manifested as the accumulation of Fusobacteria, Streptococcaceae, Streptococcus, Fusobacterium, and Prevotella and the depletion of Firmicutes, Lachnospiraceae, and Roseburia. Additionally, increased hepatic taurocholic acid in the WC group activated sphingosine-1-phosphate receptor 2, which is positively correlated with hepatic fibrosis and inflammation parameters. Mice in the WC group have higher fecal primary bile acid (BA) levels and lower fecal secondary/primary BA ratios. Serum FGF15 levels are also elevated in the WC group, which is positively correlated with hepatic inflammation. CONCLUSION: WD accelerates the progression of CLD which is associated with changes in the gut microbiota and BA metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Dieta Ocidental/efeitos adversos , Microbioma Gastrointestinal , Animais , Intoxicação por Tetracloreto de Carbono/microbiologia , Intoxicação por Tetracloreto de Carbono/patologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/microbiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Ácidos Graxos Voláteis/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Hepatite/etiologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Receptores de Esfingosina-1-Fosfato/metabolismo
12.
Microb Biotechnol ; 13(6): 1860-1876, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652882

RESUMO

The gut microbiota plays pivotal roles in liver disease onset and progression. The protective effects of Lactobacillus salivarius Li01 on liver diseases have been reported. In this study, we aimed to detect the protective effect of L. salivarius Li01 on thioacetamide (TAA)-induced acute liver injury and hyperammonaemia. C57BL/6 mice were separated into three groups and given a gavage of L. salivarius Li01 or phosphate-buffered saline for 7 days. Acute liver injury and hyperammonaemia were induced with an intraperitoneal TAA injection. L. salivarius Li01 decreased mortality and serum transaminase levels and improved histological liver damage caused by TAA. Serum inflammatory cytokine and chemokine and lipopolysaccharide-binding protein (LBP) concentrations, nuclear factor κB (NFκB) pathway activation and macrophage and neutrophil infiltration into the liver were significantly alleviated by L. salivarius Li01. L. salivarius Li01 also reinforced gut barrier and reshaped the perturbed gut microbiota by upregulating Bacteroidetes and Akkermansia richness and downregulating Proteobacteria, Ruminococcaceae_UCG_014 and Helicobacter richness. Plasma and faecal ammonia levels declined noticeably in the Li01 group, accompanied by improvements in cognitive function, neuro-inflammation and relative brain-derived neurotrophic factor (BDNF) gene expression. Our results indicated that L. salivarius Li01 could be considered a potential probiotic in acute liver injury and hepatic encephalopathy (HE).


Assuntos
Hiperamonemia , Ligilactobacillus salivarius , Animais , Hiperamonemia/induzido quimicamente , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Tioacetamida/toxicidade
13.
Microb Biotechnol ; 13(4): 1228-1244, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32363766

RESUMO

The gut microbiota is considered a key factor in pathogenesis and progression of inflammatory bowel disease (IBD). The bacterium Pediococcus pentosaceus LI05 alleviated host inflammation by maintaining the gut epithelial integrity, modulating the host immunity, gut microbiota and metabolism, but its effect on IBD remains unclear. The present study aimed to investigate the role and mechanisms of P. pentosaceus LI05. Mice were administered P. pentosaceus LI05 or phosphate-buffered saline once daily by oral gavage for 14 days, and colitis was induced by providing mice 2% DSS-containing drinking water for 7 days. P. pentosaceus LI05 ameliorated colitis in mice and reduced the body weight loss, disease activity index (DAI) scores, colon length shortening, intestinal permeability and the proinflammatory cytokine levels. Furthermore, a significantly altered gut microbiota composition with increased diversity and short-chain fatty acid (SCFA) production was observed in mice treated with P. pentosaceus LI05. Several genera, including Akkermansia and Faecalibacterium, were differentially enriched in the P. pentosaceus LI05-treated mice and were negatively correlated with colitis indices and positively correlated with gut barrier markers and SCFA levels. The P. pentosaceus LI05 treatment alleviated intestinal inflammation by maintaining the intestinal epithelial integrity and modulating the immunological profiles, gut microbiome and metabolite composition. Based on our findings, P. pentosaceus LI05 might be applied as potential preparation to ameliorate colitis.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Voláteis , Camundongos , Camundongos Endogâmicos C57BL , Pediococcus pentosaceus
14.
mSphere ; 5(1)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996423

RESUMO

Acute liver failure is a severe liver disorder that poses considerable global challenges. Previous studies on Bifidobacterium longum R0175 have mainly focused on its psychotropic functions. The current research focused on the protective efficacy of B. longum R0175 against acute liver failure caused by d-galactosamine (d-GalN) in rats and further tested the hypothesis that B. longum R0175 exerted liver-protective effects by affecting the intestinal microbiota and fecal metabolites and by inhibiting inflammation. We found that oral gavage of B. longum R0175 markedly reduced the severity of liver injury in d-GalN-treated rats, as evidenced by decreased serum levels of aspartate aminotransferase (AST) and total bile acids (TBAs) (P < 0.05). Moreover, the plasma concentrations of proinflammatory cytokines (interleukin 1ß [IL-1ß] and tumor necrosis factor-α [TNF-α]) and chemokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage chemoattractant protein 1 [MCP-1], chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-C motif] ligand 5 [CCL5], and macrophage inflammatory protein-1α [MIP-1α]) were also markedly reduced (P < 0.05). Pretreatment with B. longum R0175 partially reversed the gut microbiota dysbiosis in rats with liver injury by increasing the relative abundances of potentially beneficial bacteria, such as Alloprevotella spp., and decreasing the relative abundances of potentially harmful bacteria, such as Acetatifactor muris, Butyricimonas spp., and Oscillibacter spp. Furthermore, B. longum R0175 administration partially improved the metabolic function of the intestinal microbes, as indicated by the decreased level of lithocholic acid found in the feces.IMPORTANCE Our research investigated the protective and preventive roles of B. longum R0175 in a rat model of acute liver failure. The results illustrated that this probiotic strain exhibited protective effects in rats with acute liver failure. Thus, B. longum R0175 showed clinical application prospects that required further exploration.


Assuntos
Bifidobacterium longum , Doença Hepática Induzida por Substâncias e Drogas/terapia , Probióticos/uso terapêutico , Animais , Aspartato Aminotransferases/sangue , Ácidos e Sais Biliares/sangue , Quimiocinas/sangue , Citocinas/sangue , Disbiose , Galactosamina , Microbioma Gastrointestinal , Masculino , Ratos , Ratos Sprague-Dawley
15.
World J Gastroenterol ; 26(40): 6224-6240, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33177795

RESUMO

BACKGROUND: Intestinal dysbiosis has been shown to be associated with the pathogenesis of alcoholic liver disease (ALD), which includes changes in the microbiota composition and bacterial overgrowth, but an effective microbe-based therapy is lacking. Pediococcus pentosaceus (P. pentosaceus) CGMCC 7049 is a newly isolated strain of probiotic that has been shown to be resistant to ethanol and bile salts. However, further studies are needed to determine whether P. pentosaceus exerts a protective effect on ALD and to elucidate the potential mechanism. AIM: To evaluate the protective effect of the probiotic P. pentosaceus on ethanol-induced liver injury in mice. METHODS: A new ethanol-resistant strain of P. pentosaceus CGMCC 7049 was isolated from healthy adults in our laboratory. The chronic plus binge model of experimental ALD was established to evaluate the protective effects. Twenty-eight C57BL/6 mice were randomly divided into three groups: The control group received a pair-fed control diet and oral gavage with sterile phosphate buffered saline, the EtOH group received a ten-day Lieber-DeCarli diet containing 5% ethanol and oral gavage with phosphate buffered saline, and the P. pentosaceus group received a 5% ethanol Lieber-DeCarli diet but was treated with P. pentosaceus. One dose of isocaloric maltose dextrin or ethanol was administered by oral gavage on day 11, and the mice were sacrificed nine hours later. Blood and tissue samples (liver and gut) were harvested to evaluate gut barrier function and liver injury-related parameters. Fresh cecal contents were collected, gas chromatography-mass spectrometry was used to measure short-chain fatty acid (SCFA) concentrations, and the microbiota composition was analyzed using 16S rRNA gene sequencing. RESULTS: The P. pentosaceus treatment improved ethanol-induced liver injury, with lower alanine aminotransferase, aspartate transaminase and triglyceride levels and decreased neutrophil infiltration. These changes were accompanied by decreased levels of endotoxin and inflammatory cytokines, including interleukin-5, tumor necrosis factor-α, granulocyte colony-stimulating factor, keratinocyte-derived protein chemokine, macrophage inflammatory protein-1α and monocyte chemoattractant protein-1. Ethanol feeding resulted in intestinal dysbiosis and gut barrier disruption, increased relative abundance of potentially pathogenic Escherichia and Staphylococcus, and the depletion of SCFA-producing bacteria, such as Prevotella, Faecalibacterium, and Clostridium. In contrast, P. pentosaceus administration increased the microbial diversity, restored the relative abundance of Lactobacillus, Pediococcus, Prevotella, Clostridium and Akkermansia and increased propionic acid and butyric acid production by modifying SCFA-producing bacteria. Furthermore, the levels of the tight junction protein ZO-1, mucin proteins (mucin [MUC]-1, MUC-2 and MUC-4) and the antimicrobial peptide Reg3ß were increased after probiotic supplementation. CONCLUSION: Based on these results, the new strain of P. pentosaceus alleviated ethanol-induced liver injury by reversing gut microbiota dysbiosis, regulating intestinal SCFA metabolism, improving intestinal barrier function, and reducing circulating levels of endotoxin and proinflammatory cytokines and chemokines. Thus, this strain is a potential probiotic treatment for ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Animais , Etanol/toxicidade , Ácidos Graxos Voláteis , Hepatopatias Alcoólicas/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Pediococcus pentosaceus , RNA Ribossômico 16S
16.
J Cancer ; 10(22): 5388-5396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632483

RESUMO

Aims: Racial disparities in cancer mortality persist despite rapid developments in cancer treatment strategies. In recent decades, an increased frequency of patients with young-onset cancer has been reported. However, few studies have assessed racial disparities in clinical features and overall survival among young-onset patients with colorectal, breast, and testicular cancer. Therefore, we evaluated racial disparities in cancer mortality for these three cancer types. Methods: We extracted the data of eligible patients from the Surveillance, Epidemiology and End Results (SEER) database from 1973 to 2014. Overall and cancer-specific survival rates were compared among races using Kaplan-Meier curves. Adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated, and the association of race with survival was influenced by marital status, surgery and disease stage in Cox proportional hazard models. Results: We collected the data of 19,574 patients with colorectal cancer, 68,733 with breast cancer, and 26,410 with testicular cancer; all were aged 25-40 years. A higher proportion of Blacks presented with a distant stage at diagnosis compared to Whites and Others (colorectal cancer: 18.0%, 18.5% and 18.4%, respectively, P = 0.004; breast cancer: 3.5%, 6.3% and 4.0%, respectively, P < 0.001; testicular cancer: 6.9%, 10.8% and 8.6%, respectively, P < 0.001). Multivariate analysis showed that Blacks had the highest overall mortality rate (colorectal cancer, HR, 1.277, 95% CI: 1.198, 1.361, P < 0.001; breast cancer, HR, 1.471, 95% CI: 1.420, 1.525, P < 0.001; testicular cancer, HR, 1.887, 95% CI: 1.562, 2.281, P < 0.001). In stratified analyses, Unmarried Blacks had a higher mortality rates (colorectal cancer, HR, 1.318, 95% CI: 1.211, 1.435, P < 0.001; breast cancer, HR, 1.465, 95% CI: 1.394, 1.541, P < 0.001; testicular cancer, HR, 1.944, 95% CI: 1.544, 2.447, P < 0.001). Furthermore, Blacks with colorectal and breast cancer had a higher risk of mortality than Whites at every disease stage, with greatest disparities occurred among individuals at localized stage. The influence of racial disparities on survival was consistent among patients who accepted surgery, but was weak among those who did not undergo surgery for colorectal cancer (Blacks, HR, 1.027, 95% CI: 0.866, 1.219, P = 0.758; Others, HR, 0.919, 95% CI: 0.760, 1.112, P = 0.386) and testicular cancer (Blacks, HR, 1.039, 95% CI: 0.538, 2.007, P = 0.909; Others, HR, 0.772, 95% CI: 0.388, 1.533, P = 0.459). Conclusions: We demonstrated that Blacks had a worse prognosis for young-onset colorectal, breast, and testicular cancer. Marital status, cancer-directed surgery and disease stage may influence the association of race with the risk of mortality. Equal access to high-quality medical care among races, greater social support and comprehensive interventions are required. Moreover, further studies need to clarify the effects of biological properties like genetic differences between races on cancer patient survival.

17.
Front Microbiol ; 10: 2259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632373

RESUMO

Inflammatory bowel diseases (IBDs) develop as a result of complex interactions among genes, innate immunity and environmental factors, which are related to the gut microbiota. Multiple clinical and animal data have shown that Akkermansia muciniphila is associated with a healthy mucosa. However, its precise role in colitis is currently unknown. Our study aimed to determine its protective effects and underlying mechanisms in a dextran sulfate sodium (DSS)-induced colitis mouse model. Twenty-four C57BL/6 male mice were administered A. muciniphila MucT or phosphate-buffered saline (PBS) once daily by oral gavage for 14 days. Colitis was induced by drinking 2% DSS from days 0 to 6, followed by 2 days of drinking normal water. Mice were weighed daily and then sacrificed on day 8. We found that A. muciniphila improved DSS-induced colitis, which was evidenced by reduced weight loss, colon length shortening and histopathology scores and enhanced barrier function. Serum and tissue levels of inflammatory cytokines and chemokines (TNF-α, IL1α, IL6, IL12A, MIP-1A, G-CSF, and KC) decreased as a result of A. muciniphila administration. Analysis of 16S rDNA sequences showed that A. muciniphila induced significant gut microbiota alterations. Furthermore, correlation analysis indicated that pro-inflammatory cytokines and other injury factors were negatively associated with Verrucomicrobia, Akkermansia, Ruminococcaceae, and Rikenellaceae, which were prominently abundant in A. muciniphila-treated mice. We confirmed that A. muciniphila treatment could ameliorate mucosal inflammation either via microbe-host interactions, which protect the gut barrier function and reduce the levels of inflammatory cytokines, or by improving the microbial community. Our findings suggest that A. muciniphila may be a potential probiotic agent for ameliorating colitis.

18.
Front Microbiol ; 10: 1751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417535

RESUMO

Bacillus cereus (B. cereus) functions as a probiotic in animals, but the underlying mechanisms remain unclear. We aim to evaluate the protective effects and definite mechanism by which orally administered B. cereus prevents D-galactosamine (D-GalN)-induced liver injury in rats. Twenty-one Sprague-Dawley rats were equally assigned into three groups (N = 7 animals per group). B. cereus ATCC11778 (2 × 109 colony-forming units/ml) was administered to the B. cereus group via gavage, and phosphate-buffered saline was administered to the positive control (PC) and negative control (NC) groups for 2 weeks. The PC and B. cereus groups received 1.1 g/kg D-GalN via an intraperitoneal injection to induce liver injury. The blood, terminal ileum, liver, kidney and mesenteric lymph nodes (MLNs) were collected for histological examinations and to evaluate bacterial translocation. Liver function was also determined. Fecal samples were collected for deep sequencing of the 16S rRNA on an Illumina MiSeq platform. B. cereus significantly attenuated D-GalN-induced liver injury and improved serum alanine aminotransferase (ALT) and serum cholinesterase levels (P < 0.05 and P < 0.01, respectively). B. cereus modulated cytokine secretion, as indicated by the elevated levels of the anti-inflammatory cytokine interleukin-10 (IL-10) in both the liver and plasma (P < 0.05 and P < 0.01, respectively) and the substantially decreased levels of the cytokine IL-13 in the liver (P < 0.05). Pretreatment with B. cereus attenuated anoxygenic bacterial translocation in the veins (P < 0.05) and liver (P < 0.05) and upregulated the expression of the tight junction protein 1. The gut microbiota from the B. cereus group clustered separately from that of the PC group, with an increase in species of the Ruminococcaceae and Peptococcaceae families and a decrease in those of the Parabacteroides, Paraprevotella, and Desulfovibrio families. The potential probiotic B. cereus attenuated liver injury by restoring the gut flora balance and enhancing the intestinal barrier function.

19.
World J Gastroenterol ; 24(28): 3181-3191, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30065564

RESUMO

AIM: To assess the incidence of hepatitis B virus (HBV) reactivation in patients receiving direct-acting antiviral agent (DAA)-based therapy or interferon (IFN)-based therapy for hepatitis C and the effectiveness of preemptive anti-HBV therapy for preventing HBV reactivation. METHODS: The PubMed, MEDLINE and EMBASE databases were searched, and 39 studies that reported HBV reactivation in HBV/hepatitis C virus coinfected patients receiving DAA-based therapy or IFN-based therapy were included. The primary outcome was the rate of HBV reactivation. The secondary outcomes included HBV reactivation-related hepatitis and the effectiveness of preemptive anti-HBV treatment with nucleos(t)ide analogues. The pooled effects were assessed using a random effects model. RESULTS: The rate of HBV reactivation was 21.1% in hepatitis B surface antigen (HBsAg)-positive patients receiving DAA-based therapy and 11.9% in those receiving IFN-based therapy. The incidence of hepatitis was lower in HBsAg-positive patients with undetectable HBV DNA compared to patients with detectable HBV DNA receiving DAA therapy (RR = 0.20, 95%CI: 0.06-0.64, P = 0.007). The pooled HBV reactivation rate in patients with previous HBV infection was 0.6% for those receiving DAA-based therapy and 0 for those receiving IFN-based therapy, and none of the patients experienced a hepatitis flare related to HBV reactivation. Preemptive anti-HBV treatment significantly reduced the potential risk of HBV reactivation in HBsAg-positive patients undergoing DAA-based therapy (RR = 0.31, 95%CI: 0.1-0.96, P = 0.042). CONCLUSION: The rate of HBV reactivation and hepatitis flare occurrence is higher in HBsAg-positive patients receiving DAA-based therapy than in those receiving IFN-based therapy, but these events occur less frequently in patients with previous HBV infection. Preemptive anti-HBV treatment is effective in preventing HBV reactivation.


Assuntos
Antivirais/uso terapêutico , Coinfecção/tratamento farmacológico , Vírus da Hepatite B/fisiologia , Hepatite B/epidemiologia , Hepatite C/tratamento farmacológico , Antibioticoprofilaxia/métodos , Antivirais/farmacologia , Coinfecção/patologia , Coinfecção/virologia , Progressão da Doença , Guanina/análogos & derivados , Guanina/uso terapêutico , Hepatite B/sangue , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/sangue , Hepatite C/patologia , Hepatite C/virologia , Humanos , Incidência , Interferons/uso terapêutico , Recidiva , Tenofovir , Resultado do Tratamento , Ativação Viral/efeitos dos fármacos
20.
World J Gastroenterol ; 24(23): 2468-2481, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930468

RESUMO

AIM: To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis (NASH) development in mice fed a methionine-choline-deficient (MCD) diet. METHODS: Twenty-four male C57BL/6J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk (Control 2w group, n = 6) or 4 wk (Control 4w group, n = 6) or the MCD diet for 2 wk (MCD 2w group, n = 6) or 4 wk (MCD 4w group, n = 6). Liver injury, fibrosis, and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16s rRNA deep sequencing and gas chromatography-mass spectrometry. RESULTS: The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet, however, the mice developed prominent NASH with liver fibrosis, and the intestinal barrier was more impaired. Compared with the control diet, the MCD diet induced gradual gut microbiota dysbiosis, as evidenced by a marked decrease in the abundance of Alistipes and the (Eubacterium) coprostanoligenes group (P < 0.001 and P < 0.05, respectively) and a significant increase in Ruminococcaceae UCG 014 abundance (P < 0.05) after 2 wk. At 4 wk, the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance (P < 0.05, and P < 0.01, respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk, arachidic acid, hexadecane, palmitic acid, and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group, and at 4 wk, cholic acid, cholesterol, arachidic acid, tetracosane, and stearic acid were selected. CONCLUSION: The MCD diet induced persistent alterations in the gut microbiota and metabolome.


Assuntos
Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Deficiência de Colina/metabolismo , Modelos Animais de Doenças , Disbiose/microbiologia , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Intestinos/microbiologia , Intestinos/patologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Masculino , Metaboloma , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa