Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G931-G945, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174134

RESUMO

Helicobacter pylori infection always induces gastritis, which may progress to ulcer disease or cancer. The mechanisms underlying mucosal injury by the bacteria are incompletely understood. Here, we identify a novel pathway for H. pylori-induced gastric injury, the impairment of maturation of the essential transport enzyme and cell adhesion molecule, Na-K-ATPase. Na-K-ATPase comprises α- and ß-subunits that assemble in the endoplasmic reticulum (ER) before trafficking to the plasma membrane. Attachment of H. pylori to gastric epithelial cells increased Na-K-ATPase ubiquitylation, decreased its surface and total levels, and impaired ion balance. H. pylori did not alter degradation of plasmalemma-resident Na-K-ATPase subunits or their mRNA levels. Infection decreased association of α- and ß-subunits with ER chaperone BiP and impaired assembly of α/ß-heterodimers, as was revealed by quantitative mass spectrometry and immunoblotting of immunoprecipitated complexes. The total level of BiP was not altered, and the decrease in interaction with BiP was not observed for other BiP client proteins. The H. pylori-induced decrease in Na-K-ATPase was prevented by BiP overexpression, stopping protein synthesis, or inhibiting proteasomal, but not lysosomal, protein degradation. The results indicate that H. pylori impairs chaperone-assisted maturation of newly made Na-K-ATPase subunits in the ER independently of a generalized ER stress and induces their ubiquitylation and proteasomal degradation. The decrease in Na-K-ATPase levels is also seen in vivo in the stomachs of gerbils and chronically infected children. Further understanding of H. pylori-induced Na-K-ATPase degradation will provide insights for protection against advanced disease.NEW & NOTEWORTHY This work provides evidence that Helicobacter pylori decreases levels of Na-K-ATPase, a vital transport enzyme, in gastric epithelia, both in acutely infected cultured cells and in chronically infected patients and animals. The bacteria interfere with BiP-assisted folding of newly-made Na-K-ATPase subunits in the endoplasmic reticulum, accelerating their ubiquitylation and proteasomal degradation and decreasing efficiency of the assembly of native enzyme. Decreased Na-K-ATPase expression contributes to H. pylori-induced gastric injury.


Assuntos
Retículo Endoplasmático/enzimologia , Células Epiteliais/enzimologia , Mucosa Gástrica/enzimologia , Gastrite/enzimologia , Proteínas de Choque Térmico/metabolismo , Infecções por Helicobacter/enzimologia , Helicobacter pylori/patogenicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Cultivadas , Retículo Endoplasmático/microbiologia , Chaperona BiP do Retículo Endoplasmático , Estabilidade Enzimática , Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Gastrite/genética , Gastrite/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteólise , ATPase Trocadora de Sódio-Potássio/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa