Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(23): 14310-14323, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35642612

RESUMO

The presence of dark states causes fluorescence intermittency of single molecules due to transitions between "on" and "off" states. Genetically encodable markers such as fluorescent proteins (FPs) exhibit dark states that make several super-resolved single-molecule localization microscopy (SMLM) methods possible. However, studies quantifying the timescales and nature of dark state behavior for commonly used FPs under conditions typical of widefield and total internal reflection fluorescence (TIRF) microscopy remain scarce and pre-date many new SMLM techniques. FusionRed is a relatively bright red FP exhibiting fluorescence intermittency and has thus been identified as a potential candidate for SMLM. We herein characterize the rates for dark-state conversion and the subsequent ground-state recovery of FusionRed and its 2.5-fold brighter descendent FusionRed L175M M42Q (FusionRed-MQ) at low irradiances (1-10 W cm-2), which were previously unexplored experimental conditions. We characterized the kinetics of dark state transitions in these two FPs by using single molecule blinking and ensemble photobleaching experiments bridged with a dark state kinetic model. We find that at low irradiances, the recovery process to the ground state is minimally light-driven and FusionRed-MQ has a 1.3-fold longer ground state recovery time indicating a conformationally restricted dark-state chromophore in comparison to FusionRed. Our studies indicate that the brighter FusionRed-MQ variant exhibits higher dark state conversion rates with longer ground state recovery lifetimes, thus it is potentially a better candidate for SMLM applications than its progenitor FusionRed.


Assuntos
Imagem Individual de Molécula , Cinética , Microscopia de Fluorescência/métodos , Fotodegradação , Imagem Individual de Molécula/métodos
2.
Biochemistry ; 59(39): 3669-3682, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32914619

RESUMO

The development of fluorescent proteins (FPs) has revolutionized biological imaging. FusionRed, a monomeric red FP (RFP), is known for its low cytotoxicity and correct localization of target fusion proteins in mammalian cells but is limited in application by low fluorescence brightness. We report a brighter variant of FusionRed, "FR-MQV," which exhibits an extended fluorescence lifetime (2.8 ns), enhanced quantum yield (0.53), higher extinction coefficient (∼140 000 M-1 cm-1), increased radiative rate constant, and reduced nonradiative rate constant with respect to its precursor. The properties of FR-MQV derive from three mutations-M42Q, C159V, and the previously identified L175M. A structure-guided approach was used to identify and mutate candidate residues around the para-hydroxyphenyl and the acylimine sites of the chromophore. The C159V mutation was identified via lifetime-based flow cytometry screening of a library in which multiple residues adjacent to the para-hydroxyphenyl site of the chromophore were mutated. The M42Q mutation is located near the acylimine moiety of the chromophore and was discovered using site-directed mutagenesis guided by X-ray crystal structures. FR-MQV exhibits a 3.4-fold higher molecular brightness and a 5-fold increase in the cellular brightness in HeLa cells [based on fluorescence-activated cell sorting (FACS)] compared to FusionRed. It also retains the low cytotoxicity and high-fidelity localization of FusionRed, as demonstrated through assays in mammalian cells. These properties make FR-MQV a promising template for further engineering into a new family of RFPs.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mutagênese Sítio-Dirigida , Cristalografia por Raios X , Escherichia coli/genética , Citometria de Fluxo , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Proteína Vermelha Fluorescente
3.
Nat Methods ; 14(4): 427-434, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28288122

RESUMO

Compartmentalized biochemical activities are essential to all cellular processes, but there is no generalizable method to visualize dynamic protein activities in living cells at a resolution commensurate with cellular compartmentalization. Here, we introduce a new class of fluorescent biosensors that detect biochemical activities in living cells at a resolution up to threefold better than the diffraction limit. These 'FLINC' biosensors use binding-induced changes in protein fluorescence dynamics to translate kinase activities or protein-protein interactions into changes in fluorescence fluctuations, which are quantifiable through stochastic optical fluctuation imaging. A protein kinase A (PKA) biosensor allowed us to resolve minute PKA activity microdomains on the plasma membranes of living cells and to uncover the role of clustered anchoring proteins in organizing these activity microdomains. Together, these findings suggest that biochemical activities of the cell are spatially organized into an activity architecture whose structural and functional characteristics can be revealed by these new biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/análise , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia/instrumentação , Microscopia/métodos , Imagem Molecular/métodos , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas/métodos , Processos Estocásticos
4.
Nat Chem Biol ; 14(10): 964-971, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30061719

RESUMO

RNAs directly regulate a vast array of cellular processes, emphasizing the need for robust approaches to fluorescently label and track RNAs in living cells. Here, we develop an RNA imaging platform using the cobalamin riboswitch as an RNA tag and a series of probes containing cobalamin as a fluorescence quencher. This highly modular 'Riboglow' platform leverages different colored fluorescent dyes, linkers and riboswitch RNA tags to elicit fluorescence turn-on upon binding RNA. We demonstrate the ability of two different Riboglow probes to track mRNA and small noncoding RNA in live mammalian cells. A side-by-side comparison revealed that Riboglow outperformed the dye-binding aptamer Broccoli and performed on par with the gold standard RNA imaging system, the MS2-fluorescent protein system, while featuring a much smaller RNA tag. Together, the versatility of the Riboglow platform and ability to track diverse RNAs suggest broad applicability for a variety of imaging approaches.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/instrumentação , RNA/química , Riboswitch , Animais , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Cor , Escherichia coli , Fluorescência , Proteínas de Fluorescência Verde , Células HEK293 , Células HeLa , Humanos , Plasmídeos/metabolismo , RNA Nuclear Pequeno/química
5.
Phys Chem Chem Phys ; 22(35): 19903-19912, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32853308

RESUMO

Biliverdin is a bile pigment that has a very low fluorescence quantum yield in solution, but serves as a chromophore in far-red fluorescent proteins being developed for bio-imaging. In this work, excited-state dynamics of biliverdin dimethyl ether (BVE) in solvents were investigated using femtosecond (fs) and picosecond (ps) time-resolved absorption and fluorescence spectroscopy. This study is the first fs timescale investigation of BVE in solvents, and therefore revealed numerous dynamics that were not resolved in previous, 200 ps time resolution measurements. Viscosity- and isotope-dependent experiments were performed to identify the contributions of isomerization and proton transfer to the excited-state dynamics. In aprotic solvents, a ∼2 ps non-radiative decay accounts for 95% of the excited-state population loss. In addition, a minor ∼30 ps emissive decay pathway is likely associated with an incomplete isomerization process around the C15[double bond, length as m-dash]C16 double bond that results in a flip of the D-ring. In protic solvents, the dynamics are more complex due to hydrogen bond interactions between solute and solvent. In this case, the ∼2 ps decay pathway is a minor channel (15%), whereas ∼70% of the excited-state population decays through an 800 fs emissive pathway. The ∼30 ps timescale associated with isomerization is also observed in protic solvents. The most significant difference in protic solvents is the presence of a >300 ps timescale in which BVE can decay through an emissive state, in parallel with excited-state proton transfer to the solvent. Interestingly, a small fraction of a luminous species, which we designate lumin-BVE (LBVE), is present in protic solvents.


Assuntos
Biliverdina/análogos & derivados , Ésteres/química , Ligação de Hidrogênio , Isomerismo , Estrutura Molecular , Prótons , Solventes/química , Espectrometria de Fluorescência
6.
Phys Chem Chem Phys ; 21(5): 2365-2371, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30666332

RESUMO

Fluorescent proteins (FPs) have become fundamental tools for live cell imaging. Most FPs currently used are members of the green fluorescent protein super-family, but new fluorophores such as bilin-FPs are being developed and optimized. In particular, the UnaG FP incorporates bilirubin (BR) as a chromophore, enhancing its fluorescence quantum yield by three orders of magnitude relative to that in solution. To investigate the mechanism of this dramatic enhancement and provide a basis for further engineering of UnaG and other tetrapyrrole-based fluorophores, we performed picosecond fluorescence and femtosecond transient absorption measurements of BR bound to UnaG and its N57A site-directed mutant. The dynamics of wt-UnaG, which has a fluorescence QY of 0.51, are largely homogeneous, showing an excited state relaxation of ∼200 ps, and a 2.2 ns excited-state lifetime decay with a kinetic isotope effect (KIE) of 1.1 for D2O vs. H2O buffer. In contrast, for UnaG N57A (fluorescence QY 0.01) the results show a large spectral inhomogeneity with excited state decay timescales of 47 and 200 ps and a KIE of 1.4. The non-radiative deactivation of the excited state is limited by proton transfer. The loss of direct hydrogen bonds to the endo-vinyl dipyrrinone moiety of BR leads to high flexibility and structural heterogeneity of UnaG N57A, as seen in the X-ray crystal structure.


Assuntos
Bilirrubina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Bilirrubina/química , Bilirrubina/efeitos da radiação , Sítios de Ligação , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/efeitos da radiação , Ligação de Hidrogênio , Luz , Mutação , Ligação Proteica
7.
Anal Chem ; 89(17): 9601-9608, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28758723

RESUMO

Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) are powerful tools for quantifying and visualizing analytes in living cells, and when targeted to organelles have the potential to define distribution of analytes in different parts of the cell. However, quantitative estimates of analyte distribution require rigorous and systematic analysis of sensor functionality in different locations. In this work, we establish methods to critically evaluate sensor performance in different organelles and carry out a side-by-side comparison of three different genetically encoded sensor platforms for quantifying cellular zinc ions (Zn2+). Calibration conditions are optimized for high dynamic range and stable FRET signals. Using a combination of single-cell microscopy and a novel microfluidic platform capable of screening thousands of cells in a few hours, we observe differential performance of these sensors in the cytosol compared to the ER of HeLa cells, and identify the formation of oxidative oligomers of the sensors in the ER. Finally, we use new methodology to re-evaluate the binding parameters of these sensors both in the test tube and in living cells. Ultimately, we demonstrate that sensor responses can be affected by different cellular environments, and provide a framework for evaluating future generations of organelle-targeted sensors.


Assuntos
Citosol , Retículo Endoplasmático , Técnicas Biossensoriais , Calibragem , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Técnicas Analíticas Microfluídicas , Microfluídica , Imagem Óptica/métodos , Zinco
8.
Anal Chem ; 89(1): 711-719, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27959493

RESUMO

Fluorescent biosensors are important measurement tools for in vivo quantification of pH, concentrations of metal ions and other analytes, and physical parameters such as membrane potential. Both the development of these sensors and their implementation in examining cellular heterogeneity requires technology for measuring and sorting cells based on the fluorescence levels before and after chemical or physical perturbations. We developed a droplet microfluidic platform for the screening and separation of cell populations on the basis of the in vivo response of expressed fluorescence-based biosensors after addition of an exogenous analyte. We demonstrate the capability to resolve the responses of two genetically encoded Zn2+ sensors at a range of time points spanning several seconds and subsequently sort a mixed-cell population of varying ratios with high accuracy.


Assuntos
Técnicas Biossensoriais , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Técnicas Analíticas Microfluídicas , Proteínas Recombinantes de Fusão/química , Zinco/análise , Fluorescência , Corantes Fluorescentes/química , Células HeLa , Humanos , Tamanho da Partícula , Proteínas Recombinantes de Fusão/genética
9.
Anal Chem ; 88(23): 11821-11829, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27807973

RESUMO

We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.


Assuntos
Proteínas de Bactérias/análise , Proteínas Luminescentes/análise , Técnicas Analíticas Microfluídicas , Processos Fotoquímicos , Deinococcus/química , Células HeLa , Humanos , Raios Infravermelhos
10.
Anal Chem ; 87(10): 5026-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898152

RESUMO

There is a critical need for high-speed multiparameter photophysical measurements of large libraries of fluorescent probe variants for imaging and biosensor development. We present a microfluidic flow cytometer that rapidly assays 10(4)-10(5) member cell-based fluorophore libraries, simultaneously measuring fluorescence lifetime and photobleaching. Together, these photophysical characteristics determine imaging performance. We demonstrate the ability to resolve the diverse photophysical characteristics of different library types and the ability to identify rare populations.


Assuntos
Citometria de Fluxo/instrumentação , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Células HeLa , Humanos , Fotodegradação , Espectrometria de Fluorescência
11.
J Phys Chem Lett ; 15(6): 1644-1651, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315162

RESUMO

Fluorescent proteins (FPs) for bioimaging are typically developed by screening mutant libraries for clones with improved photophysical properties. This approach has resulted in FPs with high brightness, but the mechanistic origins of the improvements are often unclear. We focused on improving the molecular brightness in the FusionRed family of FPs with fluorescence lifetime selections on targeted libraries, with the aim of reducing nonradiative decay rates. Our new variants show fluorescence quantum yields of up to 75% and lifetimes >3.5 ns. We present a comprehensive analysis of these new FPs, including trends in spectral shifts, photophysical data, photostability, and cellular brightness resulting from codon optimization. We also performed all-atom molecular dynamics simulations to investigate the impact of side chain mutations. The trajectories reveal that individual mutations reduce the flexibility of the chromophore and side chains, leading to an overall reduction in nonradiative rates.


Assuntos
Corantes , Simulação de Dinâmica Molecular , Fluorescência , Proteínas de Fluorescência Verde/química , Mutação , Conformação Proteica , Espectrometria de Fluorescência
12.
J Phys Chem B ; 128(5): 1188-1193, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38282329

RESUMO

High photostability is a desirable property of fluorescent proteins (FPs) for imaging, yet its molecular basis is poorly understood. We performed ultrafast spectroscopy on TagRFP and its 9-fold more photostable variant TagRFP-T (TagRFP S158T) to characterize their initial photoreactions. We find significant differences in their electronic and vibrational dynamics, including faster excited-state proton transfer and transient changes in the frequency of the v520 mode in the excited electronic state of TagRFP-T. The frequency of v520, which is sensitive to chromophore planarity, downshifts within 0.58 ps and recovers within 0.87 ps. This vibrational mode modulates the distance from the chromophore phenoxy to the side chain of residue N143, which we suggest can trigger cis/trans photoisomerization. In TagRFP, the dynamics of v520 is missing, and this FP therefore lacks an important channel for chromophore isomerization. These dynamics are likely to be a key mechanism differentiating the photostability of the two FPs.


Assuntos
Prótons , Proteínas de Fluorescência Verde/química
13.
J Phys Chem B ; 127(1): 52-61, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574626

RESUMO

The 3-fold higher brightness of the recently developed mCherry-XL red fluorescent protein (FP) compared to its progenitor, mCherry, is due to a significant decrease in the nonradiative decay rate underlying its increased fluorescence quantum yield. To examine the structural and dynamic role of the four mutations that distinguish the two FPs and closely related variants, we employed microsecond time scale, all-atom molecular dynamics simulations. The simulations revealed that the I197R mutation leads to the formation of multiple hydrogen-bonded contacts and increased rigidity of the ß-barrel. In particular, mCherryXL showed reduced nanosecond time scale breathing of the gap between the ß7 and ß10-strands, which was previously shown to be the most flexible region of mCherry. Together with experimental results, the simulations also reveal steric interactions of residue 161 and a network of hydrogen-bonding interactions of the chromophore with residues at positions 59, 143, and 163 that are critical in perturbing the chromophore electronic structure. Finally, we shed light on the conformational dynamics of the conserved residues R95 and S146, which are hydrogen-bonded to the chromophore, and provide physical insights into the observed photophysics. To the best of our knowledge, this is the first study that evaluates the conformational space for a set of closely related FPs generated by directed evolution.


Assuntos
Hidrogênio , Simulação de Dinâmica Molecular , Fluorescência , Conformação Proteica , Mutação
14.
Biomol NMR Assign ; 17(2): 243-247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37684490

RESUMO

mCherry is one of the most successfully applied monomeric red fluorescent proteins (RFPs) for in vivo and in vitro imaging. However, questions pertaining to the photostability of the RFPs remain and rational further engineering of their photostability requires information about the fluorescence quenching mechanism in solution. To this end, NMR spectroscopic investigations might be helpful, and we present the near-complete backbone NMR chemical shift assignment to aid in this pursuit.


Assuntos
Engenharia de Proteínas , Engenharia de Proteínas/métodos , Ressonância Magnética Nuclear Biomolecular
15.
J Am Chem Soc ; 134(5): 2488-91, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22260720

RESUMO

Fluorescence resonance energy transfer (FRET)-based genetically encoded metal-ion sensors are important tools for studying metal-ion dynamics in live cells. We present a time-resolved microfluidic flow cytometer capable of characterizing the FRET-based dynamic response of metal-ion sensors in mammalian cells at a throughput of 15 cells/s with a time window encompassing a few milliseconds to a few seconds after mixing of cells with exogenous ligands. We have used the instrument to examine the cellular heterogeneity of Zn(2+) and Ca(2+) sensor FRET response amplitudes and demonstrated that the cluster maps of the Zn(2+) sensor FRET changes resolve multiple subpopulations. We have also measured the in vivo sensor response kinetics induced by changes in Zn(2+) and Ca(2+) concentrations. We observed an ∼30 fold difference between the extracellular and intracellular sensors.


Assuntos
Cálcio/química , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Zinco/química , Algoritmos , Células HeLa , Humanos , Íons/química
16.
Anal Chem ; 84(9): 3929-37, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22424298

RESUMO

Traditional flow cytometers are capable of rapid cellular assays on the basis of fluorescence intensity and light scatter. Microfluidic flow cytometers have largely followed the same path of technological development as their traditional counterparts; however, the significantly smaller transport distance and resulting lower cell speeds in microchannels provides for the opportunity to detect novel spectroscopic signatures based on multiple, nontemporally coincident excitation beams. Here, we characterize the design and operation of a cytometer with a three-beam, probe/bleach/probe geometry, employing HeLa suspension cells expressing fluorescent proteins. The data collection rate exceeds 20 cells/s under a range of beam intensities (5 kW to 179 kW/cm(2)). The measured percent photobleaching (ratio of fluorescence intensities excited by the first and third beams: S(beam3)/S(beam1)) partially resolves a mixture of four red fluorescent proteins in mixed samples. Photokinetic simulations are presented and demonstrate that the percent photobleaching reflects a combination of the reversible and irreversible photobleaching kinetics. By introducing a photobleaching optical signature, which complements traditional fluorescence intensity-based detection, this method adds another dimension to multichannel fluorescence cytometry and provides a means for flow-cytometry-based screening of directed libraries of fluorescent protein photobleaching.


Assuntos
Citometria de Fluxo/instrumentação , Proteínas Luminescentes/análise , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Células HeLa , Humanos , Cinética , Fotodegradação , Proteína Vermelha Fluorescente
17.
J Phys Chem B ; 126(4): 735-750, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075898

RESUMO

Fluorescent proteins (FPs) have become ubiquitous tools for biological research and concomitantly they are intriguing molecules that are amenable to study with a wide range of experimental and theoretical tools. This perspective explores the connection between the engineering of improved FPs and basic ideas from physical chemistry that explain their properties and drive the molecular design of brighter and more photostable variants. We highlight some of the progress and the many knowledge gaps in understanding the relationship between FP brightness and photostability. We also explore some of the pertinent remaining questions and suggest ways in which physical chemists might further examine the physical basis of brightness and photostability in these systems.


Assuntos
Corantes Fluorescentes , Físico-Química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química
18.
J Phys Chem B ; 126(12): 2337-2344, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35296137

RESUMO

The development of bright fluorescent proteins (FPs) emitting beyond 600 nm continues to be of interest both from a fundamental perspective in understanding protein-chromophore interactions and from a practical perspective as these FPs would be valuable for cellular imaging. We previously reported ultrafast spectral observations of the excited-state dynamics in mPlum resulting from interconversion between direct hydrogen bonding and water-mediated hydrogen bonding between the chromophore acylimine carbonyl and the Glu16 side chain. Here, we report temperature-dependent steady-state and time-resolved fluorescence measurements of mPlum and its E16H variant, which does not contain a side-chain permitting hydrogen bonding with the acylimine carbonyl. Lowering the temperature of the system freezes interconversion between the hydrogen-bonding states, thus revealing the spectral signatures of the two states. Analysis of the temperature-dependent spectra assuming Boltzmann populations of the two states yields a 205 cm-1 energy difference. This value agrees with the predictions from a quantum mechanics/molecular mechanics study of mPlum (198 cm-1). This study demonstrates the first use of cryogenic spectroscopy to quantify the energetics and timescales of FP chromophore structural states that were only previously obtained from computational methods and further confirms the importance of acylimine hydrogen-bonding dynamics to the fluorescence spectral shifts of red FPs.


Assuntos
Simulação de Dinâmica Molecular , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Proteínas Luminescentes/química , Temperatura
19.
J Phys Chem B ; 126(25): 4659-4668, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35709514

RESUMO

The approximately linear scaling of fluorescence quantum yield (ϕ) with fluorescence lifetime (τ) in fluorescent proteins (FPs) has inspired engineering of brighter fluorophores based on screening for increased lifetimes. Several recently developed FPs such as mTurquoise2, mScarlet, and FusionRed-MQV which have become useful for live cell imaging are products of lifetime selection strategies. However, the underlying photophysical basis of the improved brightness has not been scrutinized. In this study, we focused on understanding the outcome of lifetime-based directed evolution of mCherry, which is a popular red-FP (RFP). We identified four positions (W143, I161, Q163, and I197) near the FP chromophore that can be mutated to create mCherry-XL (eXtended Lifetime: ϕ = 0.70; τ = 3.9 ns). The 3-fold higher quantum yield of mCherry-XL is on par with that of the brightest RFP to date, mScarlet. We examined selected variants within the evolution trajectory and found a near-linear scaling of lifetime with quantum yield and consistent blue-shifts of the absorption and emission spectra. We find that the improvement in brightness is primarily due to a decrease in the nonradiative decay of the excited state. In addition, our analysis revealed the decrease in nonradiative rate is not limited to the blue-shift of the energy gap and changes in the excited state reorganization energy. Our findings suggest that nonradiative mechanisms beyond the scope of energy-gap models such the Englman-Jortner model are suppressed in this lifetime evolution trajectory.


Assuntos
Corantes Fluorescentes , Fluorescência
20.
J Phys Chem Lett ; 13(6): 1489-1493, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35129354

RESUMO

It has been proposed that entangled two-photon absorption (E2PA) can be observed with up to 1010 lower photon flux than its classical counterpart, therefore enabling ultralow-power two-photon fluorescence microscopy. However, there is a significant controversy regarding the magnitude of this quantum enhancement in excitation efficiency. We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at ∼1060 nm. We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally populated vibrational levels of the ground electronic state. This mechanism, which has not been previously discussed in the context of E2PA, produces a signal with a linear power dependence, as would be expected for E2PA. For the typical conditions under which E2PA measurements are performed, contributions from the HBA process could lead to a several orders of magnitude overestimate of the quantum advantage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa