Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402489, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881269

RESUMO

Aqueous zinc metal batteries are a viable candidate for next-generation energy storage systems, but suffer from poor cycling efficiency of the Zn anode. Emerging approaches aim to regulate zinc plating behavior to suppress uncontrolled dendrites, while the stripping process is seldom considered. Herein, an oriented metal stripping strategy is demonstrated to stabilize the Zn anode by removing high-index facets for exposing the (002) plane through the addition of anionic additive sodium citrate (SC). Consequently, high-index facets that coordinate strongly with SC are preferentially stripped out due to a reduced stripping barrier, rendering stable (002) facet preponderant in epitaxial plating. After repeat stripping/plating, the ultra-high proportion of 93% for (002) and large-size grains of ≈100 µm (six times larger than before) can be obtained. Zn anode shows continuous 25 000 cycles with low overpotential at 100 mA cm-2 in symmetric cells and more than 70 h of stable operation even at an ultra-high depth of discharge of 92.3%. Moreover, an extremely long lifespan of 12 000 cycles at 10 A g-1 with a high capacity retention of 89% is achieved by the assembled Zn//I2 battery. This work provides a distinctive approach to improving the stripping process to design highly efficient zinc anodes for promising aqueous zinc metal batteries.

2.
Small ; : e2403342, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742947

RESUMO

Perovskite solar cell (PSC) is a promising photovoltaic technology that achieves over 26% power conversion efficiency (PCE). However, the high materials costs, complicated fabrication process, as well as poor long-term stability, are stumbling blocks for the commercialization of the PSCs in normal structures. The hole transport layer (HTL)-free carbon-based PSCs (C-PSCs) are expected to overcome these challenges. However, C-PSCs have suffered from relatively low PCE due to severe energy loss at the perovskite/carbon interface. Herein, the study proposes to boost the hole extraction capability of carbon electrode by incorporating functional manganese (II III) oxide (Mn3O4). It is found that the work function (WF) of the carbon electrode can be finely tuned with different amounts of Mn3O4 addition, thus the interfacial charge transfer efficiency can be maximized. Besides, the mechanical properties of carbon electrode can also be strengthened. Finally, a PCE of 19.03% is achieved. Moreover, the device retains 90% of its initial PCE after 2000 h of storage. This study offers a feasible strategy for fabricating efficient paintable HTL-free C-PSCs.

3.
Environ Res ; 260: 119630, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019137

RESUMO

Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM10 in urban atmosphere. This study compiled long-term (2013-2022) measurements of speciation of ambient urban PM10 from 55 sites of 7 countries (Switzerland, Spain, France, Greece, Italy, Portugal, UK), aiming to elucidate the phenomenology of 20 TEs in PM10 in urban Europe. The monitoring sites comprised urban background (UB, n = 26), traffic (TR, n = 10), industrial (IN, n = 5), suburban background (SUB, n = 7), and rural background (RB, n = 7) types. The sampling campaigns were conducted using standardized protocols to ensure data comparability. In each country, PM10 samples were collected over a fixed period using high-volume air samplers. The analysis encompassed the spatio-temporal distribution of TEs, and relationships between TEs at each site. Results indicated an annual average for the sum of 20 TEs of 90 ± 65 ng/m3, with TR and IN sites exhibiting the highest concentrations (130 ± 66 and 131 ± 80 ng/m3, respectively). Seasonal variability in TEs concentrations, influenced by emission sources and meteorology, revealed significant differences (p < 0.05) across all monitoring sites. Estimation of TE concentrations highlighted distinct ratios between non-carcinogenic and carcinogenic metals, with Zn (40 ± 49 ng/m3), Ti (21 ± 29 ng/m3), and Cu (23 ± 35 ng/m3) dominating non-carcinogenic TEs, while Cr (5 ± 7 ng/m3), and Ni (2 ± 6 ng/m3) were prominent among carcinogenic ones. Correlations between TEs across diverse locations and seasons varied, in agreement with differences in emission sources and meteorological conditions. This study provides valuable insights into TEs in pan-European urban atmosphere, contributing to a comprehensive dataset for future environmental protection policies.

4.
Compr Rev Food Sci Food Saf ; 23(3): e13338, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38629461

RESUMO

Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.


Assuntos
MicroRNAs , Micotoxinas , Humanos , Micotoxinas/análise , MicroRNAs/genética , Contaminação de Alimentos/análise , Proteínas de Fase Aguda
5.
Angew Chem Int Ed Engl ; : e202403196, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972846

RESUMO

Photoactive black-phase formamidinium lead triiodide (α-FAPbI3) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional n-i-p structured devices. Unfortunately, α-FAPbI3 has not been made full use of its advantages in inverted p-i-n structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites during film formation. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol % of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI3 crystal-derived perovskite ink, which enabled the formation of highly-oriented α-FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI3 perovskite films via combining a series of in-situ characterizations and theoretical calculations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb-I framework help to reduce the surface energy of (100) crystal plane by 42 %, retard the crystallization rate and lower the formation energy of α-FAPbI3. Benefited from multifaceted advantages of promoted charge extraction and suppressed non-radiative recombination, the resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI3 perovskite films realized promising efficiencies up to 24.16 % (~26.5 % higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3-based inverted PSCs fabricated via scalable deposition methods.

6.
Carbohydr Polym ; 341: 122309, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876712

RESUMO

Room temperature phosphorescence (RTP) materials with wood as framework are highly desirable due to their extended afterglow, high haze and good mechanical properties, which is highly desired in lighting materials. However, it remains challenging to obtain wood-based RTP materials that possess on-demand afterglow colors while maintaining high transparency across the entire visible spectrum. In this study, long-persistent phosphorescent transparent composite with tunable afterglow color is fabricated by infiltrating delignified wood with phosphors (including carbazole, naphthalene, and pyrene) doped polymethyl methacrylate (PMMA). Such RTP woods indicate remarkable transparency, over 70 %, and an extended afterglow duration of up to 8 s. Here, PMMA serves as rigid surrounding to suppress the non-radiative transition of phosphors to ensure phosphorescence, and to fulfill in the wood lumen to match the refractive index of cellulose for transparency. By formulating phosphors with different types and concentration ratios, transparent woods with diverse phosphorescence colors, and white emission, are successfully achieved. Furthermore, the RTP woods demonstrate dynamically tunable afterglow colors over time based on the varied phosphorescent lifetimes. Characterized by their high transparency and tunable colors, these natural wood-based RTP materials have great potentials for application in the fields of LED materials, optics, and building materials.

7.
Adv Sci (Weinh) ; 11(22): e2400615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489666

RESUMO

Selenium (Se), the world's oldest optoelectronic material, has been widely applied in various optoelectronic devices such as commercial X-ray flat-panel detectors and photovoltaics. However, despite the rare and widely-dispersed nature of Se element, a sustainable recycling of Se and other valuable materials from spent Se-based devices has not been developed so far. Here a sustainable strategy is reported that makes use of the significantly higher vapor pressure of volatile Se compared to other functional layers to recycle all of them from end-of-life Se-based devices through a closed-space evaporation process, utilizing Se photovoltaic devices as a case study. This strategy results in high recycling yields of ≈ 98% for Se and 100% for other functional materials including valuable gold electrodes and glass/FTO/TiO2 substrates. The refabricated photovoltaic devices based on these recycled materials achieve an efficiency of 12.33% under 1000-lux indoor illumination, comparable to devices fabricated using commercially sourced materials and surpassing the current indoor photovoltaic industry standard of amorphous silicon cells.

8.
Adv Mater ; : e2404758, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113325

RESUMO

Directly capturing water from the air has become a compelling strategy to secure water resources. Yet, challenges persist with sorption-based hygroscopic materials, such as inadequate water adsorption efficiency, material degradation post-adsorption, and the need for energy input during water collection. This study introduces an alternative category of sorbent materials potentially for atmospheric water harvesting-metal chloride perovskites-that exhibit spontaneous water vapor adsorption and liquid water collection. This water uptake capability stems from the uncoordinated polar ions that form hydrogen bonds with water molecules, while the cubic lattice imparts a solid framework ensuring structural stability and inhibiting hydrolysis. The methylammonium lead chloride perovskite pellets exhibit efficient water collection performance, with a record absorption rate of 0.841 L m-2 h-1 and a total water collection of 3.675 L m-2 within a 7-h cycle. This initiative attempts to provide a new material class candidate for the potential application of passive atmospheric water harvesting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa