Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(25): 12156-12160, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109998

RESUMO

The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics. High-T c cuprates crystallize into a layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high-T c cuprates are elongated along the c axis, leading to a 3dx 2-y 2 orbital at the top of the band structure wherein the doped holes reside. This scenario gives rise to 2D characteristics in high-T c cuprates that favor d-wave pairing symmetry. Here, we report superconductivity in a cuprate Ba2CuO4-y , wherein the local octahedron is in a very exceptional compressed version. The Ba2CuO4-y compound was synthesized at high pressure at high temperatures and shows bulk superconductivity with critical temperature (T c ) above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the T c for the isostructural counterparts based on classical La2CuO4 X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron, the 3d3z 2-r 2 orbital will be lifted above the 3dx 2-y 2 orbital, leading to significant 3D nature in addition to the conventional 3dx 2-y 2 orbital. This work sheds important light on advancing our comprehensive understanding of the superconducting mechanism of high T c in cuprate materials.

2.
Phys Rev Lett ; 121(16): 167004, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387623

RESUMO

A magnetic order can be completely suppressed at zero temperature (T), by doping carriers or applying pressure, at a quantum critical point, around which physical properties change drastically. However, the situation is unclear for an electronic nematic order that breaks rotation symmetry. Here, we report nuclear magnetic resonance studies on NaFe_{1-x}Co_{x}As where magnetic and nematic transitions are well separated. The nuclear magnetic resonance spectrum is sensitive to inhomogeneous magnetic fields in the vortex state, which is related to London penetration depth λ_{L} that measures the electron mass m^{*}. We discovered two peaks in the doping dependence of λ_{L}^{2}(T∼0), one at x_{M}=0.027 where the spin-lattice relaxation rate shows quantum critical behavior, and another at x_{c}=0.032 around which the nematic transition temperature extrapolates to zero and the electrical resistivity shows a T-linear variation. Our results indicate that a nematic quantum critical point lies beneath the superconducting dome at x_{c} where m^{*} is enhanced. The impact of the nematic fluctuations on superconductivity is discussed.

4.
Proc Natl Acad Sci U S A ; 108(1): 24-8, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173267

RESUMO

We report a successful observation of pressure-induced superconductivity in a topological compound Bi(2)Te(3) with T(c) of ∼3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi(2)Te(3) single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi(2)Te(3) due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor.


Assuntos
Bismuto/química , Condutividade Elétrica , Pressão , Telúrio/química , Cristalografia por Raios X , Síncrotrons , Difração de Raios X
5.
Scand J Immunol ; 77(6): 482-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23551069

RESUMO

The aim of this study was to establish the antioxidant status and oxidative stress in adult patients with chronic idiopathic thrombocytopenic purpura (ITP). Eighty-four patients diagnosed with chronic ITP were studied. Fifty-eight age-matched healthy subjects were selected as controls. Serum nitrogen monoxide ( NO), oxidized glutathione (GSSG), malondialdehyde (MDA), total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase(SOD), hydrogen peroxide enzyme (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH) were evaluated by enzyme-linked immunosorbent assay (ELISA). It was found that serum SOD, CAT, GSH-Px, GSH, TAS levels were significantly lower in patients with chronic ITP than controls (all P < 0.05), while serum NO, GSSG, MDA, TOS values were significantly higher (P < 0.05). The number of platelet showed a negative correlation with NO, GSSG, MDA, TOS, respectively,while platelet number showed a positive correlation with SOD, CAT, GSH-Px, GSH, TAS. These findings suggested that oxidants were increased and antioxidants were decreased in patients with chronic ITP, these may be prominent factors in destructing the platelet membrane. The scavenging of oxygen radical provides a theoretical basis for the treatment of ITP patients.


Assuntos
Antioxidantes/análise , Estresse Oxidativo/fisiologia , Púrpura Trombocitopênica Idiopática/sangue , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino
6.
Phys Rev Lett ; 109(2): 027204, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030204

RESUMO

X-ray absorption spectroscopy studies of the magnetic-insulating ground state of Sr2IrO4 at ambient pressure show a clear deviation from a strong spin-orbit (SO) limit J(eff)=1/2 state, a result of local exchange interactions and a nonzero tetragonal crystal field mixing SO split J(eff)=1/2, 3/2 states. X-ray magnetic circular dichroism measurements in a diamond anvil cell show a magnetic transition at a pressure of ∼17 GPa, where the "weak" ferromagnetic moment is quenched despite transport measurements showing insulating behavior to at least 40 GPa. The magnetic transition has implications for the origin of the insulating gap and the nature of exchange interactions in this SO coupled system. The expectation value of the angular part of the SO interaction, , extrapolates to zero at ∼80-90 GPa where an increased bandwidth strongly mixes J(eff)=1/2, 3/2 states and SO interactions no longer dominate the electronic ground state of Sr2IrO4.

7.
Phys Rev Lett ; 108(23): 236403, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003979

RESUMO

We report a comprehensive high-pressure study on the triple-layer T'-La4Ni3O8 with a suite of experimental probes, including structure determination, magnetic, and transport properties up to 50 GPa. Consistent with a recent ab inito calculation, application of hydrostatic pressure suppresses an insulator-metal spin-state transition at P(c)≈6 GPa. However, a low-spin metallic phase does not emerge after the high-spin state is suppressed to the lowest temperature. For P>20 GPa, the ambient T' structure transforms gradually to a T(†)-type structure, which involves a structural reconstruction from fluorite La-O2-La blocks under low pressures to rock-salt LaO-LaO blocks under high pressures. Absence of the metallic phase under pressure has been discussed in terms of local displacements of O2- ions in the fluorite block under pressure before a global T(†) phase is established.

8.
Proc Natl Acad Sci U S A ; 105(20): 7115-9, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18480262

RESUMO

The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.


Assuntos
Bário/química , Compostos de Cálcio/química , Compostos de Cálcio/síntese química , Cálcio/química , Óxidos/química , Rutênio/química , Estrôncio/química , Titânio/química , Físico-Química/métodos , Cristalografia por Raios X , Geologia/métodos , Ferro/química , Magnetismo , Modelos Químicos , Óxidos/síntese química , Pressão , Temperatura
9.
Sci Rep ; 10(1): 4503, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144355

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 9(1): 7490, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097727

RESUMO

We report a new diluted ferromagnetic semiconductor Li1+y(Cd,Mn)P, wherein carrier is doped via excess Li while spin is doped by isovalence substitution of Mn2+ into Cd2+. The extended Cd 4d-orbitals lead to more itinerant characters of Li1+y(Cd,Mn)P than that of analogous Li1+y(Zn,Mn)P. A higher Curie temperature of 45 K than that for Li1+y(Zn,Mn)P is obtained in Li1+y(Cd,Mn)P polycrystalline samples by Arrott plot technique. The p-type carriers are determined by Hall effect measurements. The first principle calculations and X-ray diffraction measurements indicate that occupation of excess Li is at Cd sites rather than the interstitial site. Consequently holes are doped by excess Li substitution. More interestingly Li1+y(Cd,Mn)P shows a very low coercive field (<100 Oe) and giant negative magnetoresistance (~80%) in ferromagnetic state that will benefit potential spintronics applications.

11.
J Phys Condens Matter ; 30(25): 254001, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29741494

RESUMO

Pressure technique is an effective way to modify magnetic properties of diluted magnetic semiconductors (DMS). Based on single crystal, in-plane electrical transport properties of a new generation DMS (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 have been measured with hydrostatic pressure up to 1.8 GPa. Magnetic properties of the single crystal sample are effectively tuned by pressure. Upon compression, the in-plane resistivity initially decreases but then increases when pressure is higher than 1.2 GPa. First principle calculations suggest that decrease of the resistivity is due to enhancement of density of state at Femi energy while increase of the resistivity under higher pressure is caused by distorted MnAs4 tetrahedra. We reveal that the configuration of the MnAs4 tetrahedra and strength of interlayer As-As bonding are of importance to ferromagnetic coupling of (Ba,K)(Zn,Mn)2As2.

12.
Sci Rep ; 7(1): 14473, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101360

RESUMO

Recently a new diluted magnetic semiconductor, (Ba,K)(Zn,Mn)2As2 (BZA), with high Curie temperature was discovered, showing an independent spin and charge-doping mechanism. This makes BZA a promising material for spintronics devices. We report the successful growth of a BZA single crystal for the first time in this study. An Andreev reflection junction, which can be used to evaluate spin polarization, was fabricated based on the BZA single crystal. A 66% spin polarization of the BZA single crystal was obtained by Andreev reflection spectroscopy analysis.

13.
Rev Sci Instrum ; 88(12): 125109, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289218

RESUMO

A new miniature panoramic diamond anvil cell (mini-pDAC) as well as a unique gas membrane-driven mechanism is developed and implemented to measure electronic, magnetic, vibrational, and thermodynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the synchrotron Mössbauer spectroscopy (SMS) simultaneously at high pressure (over Mbar) and low temperature (T < 10 K). The gas membrane system allows in situ pressure tuning of the mini-pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat system to achieve low temperatures, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The system has achieved sample temperatures as low as 9 K. Using the membrane, sample pressures of up to 1.4 Mbar have been generated from this mini-pDAC. The instrument has been routinely used at 3-ID, Advanced Photon Source, for NRIXS and SMS studies. The same instrument can easily be used for other X-ray techniques, such as X-ray radial diffraction, X-ray Raman scattering, X-ray emission spectroscopy, and X-ray inelastic scattering under high pressure and low temperature. In this paper, technical details of the mini-pDAC, membrane engaging mechanism, and the cryostat system are described, and some experimental results are discussed.

14.
Sci Rep ; 7: 39699, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051188

RESUMO

Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi-Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

15.
Sci Rep ; 7: 44367, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300156

RESUMO

Recently, theoretical studies show that layered HfTe5 is at the boundary of weak &strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic &crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors.

16.
J Phys Condens Matter ; 27(1): 015504, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25478917

RESUMO

The electronic structure of insulating antiferromagnetic LiMnAs is investigated using soft x-ray spectroscopy and compared to the electronic structure of metallic LiFeAs. Our calculations support the experimentally observed insulating antiferromagnetic order in LiMnAs. The x-ray absorption and resonant inelastic x-ray scattering spectra in LiFeAs and LiMnAs are adequately explained by the electronic structure alone, although it is possible that LiMnAs has significant electronic correlations driven by Hund's J coupling. Finally, we show evidence of a possible spin trap in Li(Fe0.95Mn0.05)As.

17.
Nat Commun ; 6: 6056, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583450

RESUMO

In conventional BCS superconductors, the quantum condensation of superconducting electron pairs is understood as a Fermi surface instability, in which the low-energy electrons are paired by attractive interactions. Whether this explanation is still valid in high-Tc superconductors such as cuprates and iron-based superconductors remains an open question. In particular, a fundamentally different picture of the electron pairs, which are believed to be formed locally by repulsive interactions, may prevail. Here we report a high-resolution angle-resolved photoemission spectroscopy study on LiFe(1-x)CoxAs. We reveal a large and robust superconducting gap on a band sinking below the Fermi level on Co substitution. The observed Fermi-surface-free superconducting order is also the largest over the momentum space, which rules out a proximity effect origin and indicates that the order parameter is not tied to the Fermi surface as a result of a surface instability.

18.
J Phys Condens Matter ; 26(43): 435703, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25299428

RESUMO

The Cu substitution effect on the superconductivity of LiFeAs has been studied in comparison with Co/Ni substitution. It is found that the shrinking rate of the lattice parameter c for Cu substitution is much smaller than that of Co/Ni substitution. This is in conjugation with the observation of ARPES that shows almost the same electron and hole Fermi surfaces (FSs) size for undoped and Cu substituted LiFeAs sample, except for a very small hole band sinking below Fermi level with doping. This indicates that there is little doping effect at Fermi surface by Cu substitution, in sharp contrast to the more effective carrier doping effect by Ni or Co.

19.
Sci Rep ; 4: 3685, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24418845

RESUMO

One of key issues in studying iron based superconductors is to understand how the magnetic phase of the parent compounds evolves. Here we report the systematic investigation of paramagnetic to antiferromagnetic and tetragonal to orthorhombic structural transitions of "122" SrFe2As2 parent compound using combined high resolution synchrotron Mössbauer spectroscopy and x-ray diffraction techniques in a cryogenically cooled high pressure diamond anvil cell. It is found that although the two transitions are coupled at 205 K at ambient pressure, they are concurrently suppressed to much lower temperatures near a quantum critical pressure of approximately 4.8 GPa where the antiferromagnetic state transforms into bulk superconducting state. Our results indicate that the lattice distortions and magnetism jointly play a critical role in inducing superconductivity in iron based compounds.

20.
J Phys Condens Matter ; 26(21): 215402, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24805299

RESUMO

We conducted in situ angle dispersive high pressure x-ray diffraction experiments on Sr3Ir2O7 up to 23.1 GPa at 25 K with neon as the pressure transmitting medium. Pressure induces a highly anisotropic compressional behavior seen where the tetragonal plane is compressed much faster than the perpendicular direction. By analyzing different aspects of the diffraction data, a second-order structural transition is observed at approximately 14 GPa, which is accompanied by the insulating state to nearly metallic state at 13.2 GPa observed previously (Li et al 2013 Phys. Rev. B 87 235127). Our results highlight the coupling between electronic state and lattice structure in Sr3Ir2O7 under pressure.


Assuntos
Irídio/química , Óxidos/química , Pressão , Estrôncio/química , Transição de Fase , Análise Espectral Raman , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa