Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7845): 268-274, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568825

RESUMO

Fundamental relationships are believed to exist between the symmetries of building blocks and the condensed matter phases that they form1. For example, constituent molecular and colloidal rods and disks impart their uniaxial symmetry onto nematic liquid crystals, such as those used in displays1,2. Low-symmetry organizations could form in mixtures of rods and disks3-5, but entropy tends to phase-separate them at the molecular and colloidal scales, whereas strong elasticity-mediated interactions drive the formation of chains and crystals in nematic colloids6-11. To have a structure with few or no symmetry operations apart from trivial ones has so far been demonstrated to be a property of solids alone1, but not of their fully fluid condensed matter counterparts, even though such symmetries have been considered theoretically12-15 and observed in magnetic colloids16. Here we show that dispersing highly anisotropic charged colloidal disks in a nematic host composed of molecular rods provides a platform for observing many low-symmetry phases. Depending on the temperature, concentration and surface charge of the disks, we find nematic, smectic and columnar organizations with symmetries ranging from uniaxial1,2 to orthorhombic17-21 and monoclinic12-15. With increasing temperature, we observe unusual transitions from less- to more-ordered states and re-entrant22 phases. Most importantly, we demonstrate the presence of reconfigurable monoclinic colloidal nematic order, as well as the possibility of thermal and magnetic control of low-symmetry self-assembly2,23,24. Our experimental findings are supported by theoretical modelling of the colloidal interactions between disks in the nematic host and may provide a route towards realizing many low-symmetry condensed matter phases in systems with building blocks of dissimilar shapes and sizes, as well as their technological applications.

2.
Proc Natl Acad Sci U S A ; 121(18): e2322710121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652740

RESUMO

Many living and artificial systems show similar emergent behavior and collective motions on different scales, starting from swarms of bacteria to synthetic active particles, herds of mammals, and crowds of people. What all these systems often have in common is that new collective properties like flocking emerge from interactions between individual self-propelled or driven units. Such systems are naturally out-of-equilibrium and propel at the expense of consumed energy. Mimicking nature by making self-propelled or externally driven particles and studying their individual and collective motility may allow for deeper understanding of physical underpinnings behind collective motion of large groups of interacting objects or beings. Here, using a soft matter system of colloids immersed into a liquid crystal, we show that resulting so-called nematoelastic multipoles can be set into a bidirectional locomotion by external oscillating electric fields. Out-of-equilibrium elastic interactions between such colloidal objects lead to collective flock-like behaviors emerging from time-varying elasticity-mediated interactions between externally driven propelling particles. Repulsive elastic interactions in the equilibrium state can be turned into attractive interactions in the out-of-equilibrium state under applied external electric fields. We probe this behavior at different number densities of colloidal particles and show that particles in dense dispersions collectively select the same direction of a coherent motion due to elastic interactions between near neighbors. In our experimentally implemented design, their motion is highly ordered and without clustering or jamming often present in other colloidal transport systems, which is promising for technological and fundamental-science applications, like nano-cargo transport, out-of-equilibrium assembly, and microrobotics.

3.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916997

RESUMO

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Assuntos
Cílios , Hidrocefalia , Microtúbulos , Animais , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/metabolismo , Humanos , Camundongos , Microtúbulos/metabolismo , Masculino , Cílios/metabolismo , Cílios/patologia , Feminino , Katanina/metabolismo , Katanina/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Neurônios/metabolismo , Epêndima/metabolismo , Epêndima/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia
4.
Am J Hum Genet ; 110(5): 846-862, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37086723

RESUMO

Craniosynostosis (CS) is the most common congenital cranial anomaly. Several Mendelian forms of syndromic CS are well described, but a genetic etiology remains elusive in a substantial fraction of probands. Analysis of exome sequence data from 526 proband-parent trios with syndromic CS identified a marked excess (observed 98, expected 33, p = 4.83 × 10-20) of damaging de novo variants (DNVs) in genes highly intolerant to loss-of-function variation (probability of LoF intolerance > 0.9). 30 probands harbored damaging DNVs in 21 genes that were not previously implicated in CS but are involved in chromatin modification and remodeling (4.7-fold enrichment, p = 1.1 × 10-11). 17 genes had multiple damaging DNVs, and 13 genes (CDK13, NFIX, ADNP, KMT5B, SON, ARID1B, CASK, CHD7, MED13L, PSMD12, POLR2A, CHD3, and SETBP1) surpassed thresholds for genome-wide significance. A recurrent gain-of-function DNV in the retinoic acid receptor alpha (RARA; c.865G>A [p.Gly289Arg]) was identified in two probands with similar CS phenotypes. CS risk genes overlap with those identified for autism and other neurodevelopmental disorders, are highly expressed in cranial neural crest cells, and converge in networks that regulate chromatin modification, gene transcription, and osteoblast differentiation. Our results identify several CS loci and have major implications for genetic testing and counseling.


Assuntos
Craniossinostoses , Tretinoína , Humanos , Mutação , Craniossinostoses/genética , Regulação da Expressão Gênica , Cromatina , Predisposição Genética para Doença
5.
Proc Natl Acad Sci U S A ; 120(32): e2302190120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523548

RESUMO

The paucity of investigations of carbon (C) dynamics through the soil profile with warming makes it challenging to evaluate the terrestrial C feedback to climate change. Soil microbes are important engines driving terrestrial biogeochemical cycles; their carbon use efficiency (CUE), defined as the proportion of metabolized organic C allocated to microbial biomass, is a key regulator controlling the fate of soil C. It has been theorized that microbial CUE should decline with warming; however, empirical evidence for this response is scarce, and data from deeper soils are particularly scarce. Here, based on soil samples from a whole-soil-profile warming experiment (0 to 1 m, +4 °C) and 18O tracing approach, we examined the vertical variation of microbial CUE and its response to ~3.3-y experimental warming in an alpine grassland on the Qinghai-Tibetan Plateau. Microbial CUE decreased with soil depth, a trend that was primarily controlled by soil C availability. However, warming had limited effects on microbial CUE regardless of soil depth. Similarly, warming had no significant effect on soil C availability, as characterized by extractable organic C, enzyme-based lignocellulose index, and lignin phenol-based ratios of vanillyls, syringyls, and cinnamyls. Collectively, our work suggests that short-term warming does not alter microbial CUE in either surface or deep soils, and emphasizes the regulatory role of soil C availability on microbial CUE.


Assuntos
Pradaria , Solo , Solo/química , Carbono/metabolismo , Microbiologia do Solo , Mudança Climática
6.
Proc Natl Acad Sci U S A ; 120(16): e2214997120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043537

RESUMO

While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.


Assuntos
Cardiopatias Congênitas , Neoplasias Meníngeas , Meningioma , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiopatias Congênitas/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Meningioma/patologia , Mutação , Crânio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Humanos , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
7.
Hepatology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557779

RESUMO

BACKGROUND AND AIMS: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS: Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS: These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.

8.
Brain ; 147(4): 1553-1570, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128548

RESUMO

Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.


Assuntos
Transtorno do Espectro Autista , Aqueduto do Mesencéfalo/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X , Hidrocefalia , Criança , Humanos , Transtorno do Espectro Autista/genética , Fatores de Transcrição/genética , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/genética , Epigênese Genética , Proteínas do Olho/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
9.
Brain ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833623

RESUMO

Congenital hydrocephalus (CH), characterized by cerebral ventriculomegaly, is one of the most common reasons for pediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate CH risk gene, however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated CH (totaling 2,697 parent-proband trios and 8,091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, CH, developmental delay, dysmorphic features, and other structural brain defects including corpus callosum dysgenesis and white matter hypoplasia. Eight unrelated patients were found to harbor arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven additional patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain. These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome featuring ventriculomegaly and CH.

10.
Brain ; 147(1): 311-324, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37713627

RESUMO

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Assuntos
Distonia , Epilepsia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética
11.
PLoS Genet ; 18(6): e1010252, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671298

RESUMO

De novo variants (DNVs) with deleterious effects have proved informative in identifying risk genes for early-onset diseases such as congenital heart disease (CHD). A number of statistical methods have been proposed for family-based studies or case/control studies to identify risk genes by screening genes with more DNVs than expected by chance in Whole Exome Sequencing (WES) studies. However, the statistical power is still limited for cohorts with thousands of subjects. Under the hypothesis that connected genes in protein-protein interaction (PPI) networks are more likely to share similar disease association status, we developed a Markov Random Field model that can leverage information from publicly available PPI databases to increase power in identifying risk genes. We identified 46 candidate genes with at least 1 DNV in the CHD study cohort, including 18 known human CHD genes and 35 highly expressed genes in mouse developing heart. Our results may shed new insight on the shared protein functionality among risk genes for CHD.


Assuntos
Exoma , Cardiopatias Congênitas , Animais , Estudos de Casos e Controles , Estudos de Coortes , Cardiopatias Congênitas/genética , Humanos , Camundongos , Sequenciamento do Exoma
12.
J Neurosci ; 43(16): 2907-2920, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36868854

RESUMO

General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.


Assuntos
Prosencéfalo Basal , Isoflurano , Masculino , Feminino , Camundongos , Animais , Isoflurano/farmacologia , Prosencéfalo Basal/fisiologia , Neurônios GABAérgicos/fisiologia , Sono/fisiologia , Eletroencefalografia , Anestesia Geral
13.
Nat Mater ; 22(1): 64-72, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36456872

RESUMO

Liquid crystals are widely known for their technological uses in displays, electro-optics, photonics and nonlinear optics, but these applications typically rely on defining and switching non-topological spatial patterns of the optical axis. Here, we demonstrate how a liquid crystal's optical axis patterns with singular vortex lines can robustly steer beams of light. External stimuli, including an electric field and light itself, allow us to reconfigure these unusual light-matter interactions. Periodic arrays of vortices obtained by photo-patterning enable the vortex-mediated fission of optical solitons, yielding their lightning-like propagation patterns. Predesigned patterns and spatial trajectories of vortex lines in high-birefringence liquid crystals can steer light into closed loops or even knots. Our vortex lattices might find technological uses in beam steering, telecommunications, virtual reality implementations and anticounterfeiting, as well as possibly offering a model system for probing the interaction of light with defects, including the theoretically predicted, imagination-capturing light-steering action of cosmic strings, elusive defects in cosmology.

14.
BMC Cancer ; 24(1): 123, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267913

RESUMO

BACKGROUND: Brain metastasis is a common outcome in non-small cell lung cancer, and despite aggressive treatment, its clinical outcome is still frustrating. In recent years, immunotherapy has been developing rapidly, however, its therapeutic outcomes for primary lung cancer and brain metastases are not the same, suggesting that there may be differences in the immune microenvironment of primary lung cancer and brain metastases, however, we currently know little about these differences. METHODS: Seventeen paired samples of NSCLC and their brain metastases and 45 other unpaired brain metastases samples were collected for the current study. Immunohistochemical staining was performed on all samples for the following markers: immune checkpoints CTLA-4, PD-1, PD-L1, B7-H3, B7-H4, IDO1, and EphA2; tumor-infiltrating lymphocytes (TILs) CD3, CD4, CD8, and CD20; tumor-associated microglia/macrophages (TAMs) CD68 and CD163; and tumor proliferation index Ki-67. The differences in expression of these markers were compared in 17 paired samples, and the effect of the expression level of these markers on the prognosis of patients was analyzed in lung adenocarcinoma brain metastases samples. Subsequently, multiplex immunofluorescence staining was performed in a typical lung-brain paired sample based on the aforementioned results. The multiplex immunofluorescence staining results revealed the difference in tumor immune microenvironment between primary NSCLC and brain metastases. RESULTS: In 17 paired lesions, the infiltration of CTLA-4+ (P = 0.461), PD-1+ (P = 0.106), CD3+ (P = 0.045), CD4+ (P = 0.037), CD8+ (P = 0.008), and CD20+ (P = 0.029) TILs in brain metastases were significantly decreased compared with primary tumors. No statistically significant difference was observed in the CD68 (P = 0.954) and CD163 (P = 0.654) TAM infiltration between primary NSCLC and paired brain metastases. In all the brain metastases lesions, the expression of PD-L1 is related to the time interval of brain metastases in NSCLC. In addition, the Cox proportional hazards regression models showed high expression of B7-H4 (hazard ratio [HR] = 3.276, 95% confidence interval [CI] 1.335-8.041, P = 0.010) and CD68 TAM infiltration (HR = 3.775, 95% CI 1.419-10.044, P = 0.008) were independent prognosis factors for lung adenocarcinoma brain metastases patients. CONCLUSIONS: Both temporal and spatial heterogeneity is present between the primary tumor and brain metastases of NCSLC. Brain metastases lesions exhibit a more immunosuppressive tumor immune microenvironment. B7-H4 and CD68+ TAMs may have potential therapeutic value for lung adenocarcinoma brain metastases patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
15.
Mol Cell Biochem ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462549

RESUMO

Dilated cardiomyopathy (DCM) is a significant cause of heart failure that requires heart transplantation. Fibroblasts play a central role in the fibro-inflammatory microenvironment of DCM. However, their cellular heterogeneity and interaction with immune cells have not been well identified. An integrative analysis was conducted on single-cell RNA sequencing (ScRNA-Seq) data from human left ventricle tissues, which comprised 4 hearts from healthy donors and 6 hearts with DCM. The specific antigen-presenting fibroblast (apFB) was explored as a subtype of fibroblasts characterized by expressing MHCII genes, the existence of which was confirmed by immunofluorescence staining of 3 cardiac tissues from DCM patients with severe heart failure. apFB highly expressed the genes that response to IFN-γ, and it also have a high activity of the JAK-STAT pathway and the transcription factor RFX5. In addition, the analysis of intercellular communication between apFBs and CD4+T cells revealed that the anti-inflammatory ligand-receptor pairs TGFB-TGFR, CLEC2B-KLRB1, and CD46-JAG1 were upregulated in DCM. The apFB signature exhibited a positive correlation with immunosuppression and demonstrated diagnostic and prognostic value when evaluated using a bulk RNA dataset comprising 166 donors and 166 DCM samples. In conclusion, the present study identified a novel subpopulation of fibroblasts that specifically expresses MHCII-encoding genes. This specific apFBs can suppress the inflammation occurring in DCM. Our findings further elucidate the composition of the fibro-inflammatory microenvironment in DCM, and provide a novel therapeutic target.

16.
Eur Radiol ; 34(3): 1659-1666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37672054

RESUMO

OBJECTIVE: To report the results of a dose survey conducted across 31 provinces in mainland China from 2017 to 2018 and to analyse the dose level to determine the national diagnostic reference levels (DRLs) for paediatric CT procedures. METHODS: At least ten patients for each age group (0- < 1, 1- < 5, 5- < 10, 10- < 15 years) and each procedure (head, chest and abdomen) for each CT scanner were selected from four to eight hospitals in each province. The dose information (CTDIvol and DLP) was collected from the HIS or RIS-PACS systems. The median values in each CT scanner were considered the representative dose values for the paediatric patients in CT scanning. The national DRLs were estimated based on the 75th percentile distribution of the median values. RESULTS: A total of 24,395 patients and 319 CT scanners were investigated across 262 hospitals. For paediatric CT scanning in 4 different age groups, the median (P50) and the 75th percentile (P75) of CTDIvol and DLP for each scanning procedure were calculated and reported. National DRLs were then proposed for each procedure and age group. CONCLUSION: The dose level of CT scanning for children in mainland China was reported for the first time. The DRLs for paediatric CT in the present study are similar to those in some Asian countries but higher than those in European countries. CLINICAL RELEVANCE STATEMENT: The paediatric CT is an extensively used tool in diagnosing paediatric disease; however, children are more sensitive to radiation. Establishing the diagnostic reference level of paediatric CT examination is necessary to reduce the dose of CT in children and promote the optimisation of medical exposure. KEY POINTS: • The DRLs for 3 paediatric CT procedures (head, chest and abdomen) and 4 age groups (0- < 1, 1- < 5, 5- < 10, 10- < 15 years) were proposed in mainland China first time. • The examination parameter and dose for children need to be further optimised in China, especially to lower the tube voltage in paediatric CT.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Criança , Humanos , Adolescente , Doses de Radiação , Valores de Referência , Tomografia Computadorizada por Raios X/métodos , China/epidemiologia
17.
Brain ; 146(9): 3616-3623, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37253099

RESUMO

Moyamoya disease, a cerebrovascular disease leading to strokes in children and young adults, is characterized by progressive occlusion of the distal internal carotid arteries and the formation of collateral vessels. Altered genes play a prominent role in the aetiology of moyamoya disease, but a causative gene is not identified in the majority of cases. Exome sequencing data from 151 individuals from 84 unsolved families were analysed to identify further genes for moyamoya disease, then candidate genes assessed in additional cases (150 probands). Two families had the same rare variant in ANO1, which encodes a calcium-activated chloride channel, anoctamin-1. Haplotype analyses found the families were related, and ANO1 p.Met658Val segregated with moyamoya disease in the family with an LOD score of 3.3. Six additional ANO1 rare variants were identified in moyamoya disease families. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harbouring these gain-of-function ANO1 variants had classic features of moyamoya disease, but also had aneurysm, stenosis and/or occlusion in the posterior circulation. Our studies support that ANO1 gain-of-function pathogenic variants predispose to moyamoya disease and are associated with unique involvement of the posterior circulation.


Assuntos
Anoctamina-1 , Doença de Moyamoya , Criança , Humanos , Adulto Jovem , Anoctamina-1/genética , Canais de Cloreto/genética , Doença de Moyamoya/genética , Proteínas de Neoplasias/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38884920

RESUMO

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

19.
Cereb Cortex ; 33(6): 3012-3025, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35851401

RESUMO

Arachnoid cysts (ACs) are the most common space-occupying lesions in the human brain and present significant challenges for clinical management. While most cases of ACs are sporadic, nearly 40 familial forms have been reported. Moreover, ACs are seen with increased frequency in multiple Mendelian syndromes, including Chudley-McCullough syndrome, acrocallosal syndrome, and autosomal recessive primary ciliary dyskinesia. These findings suggest that genetic factors contribute to AC pathogenesis. However, traditional linkage and segregation approaches have been limited in their ability to identify causative genes for ACs because the disease is genetically heterogeneous and often presents asymptomatically and sporadically. Here, we comprehensively review theories of AC pathogenesis, the genetic evidence for AC formation, and discuss a different approach to AC genomics that could help elucidate this perplexing lesion and shed light on the associated neurodevelopmental phenotypes seen in a significant subset of these patients.


Assuntos
Cistos Aracnóideos , Imageamento por Ressonância Magnética , Humanos , Cistos Aracnóideos/diagnóstico por imagem , Cistos Aracnóideos/genética , Cistos Aracnóideos/patologia , Agenesia do Corpo Caloso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síndrome
20.
Cereb Cortex ; 33(8): 4262-4279, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36097331

RESUMO

Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.


Assuntos
Hidrocefalia , Células-Tronco Neurais , Animais , Criança , Humanos , Hidrocefalia/cirurgia , Encéfalo , Ventrículos Cerebrais , Procedimentos Neurocirúrgicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa