Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902501

RESUMO

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

2.
Neurobiol Dis ; 180: 106076, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921779

RESUMO

The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.


Assuntos
AVC Isquêmico , Substância Branca , Humanos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Neuroglia/patologia
3.
Acta Pharmacol Sin ; 44(4): 780-790, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36038765

RESUMO

Increasing evidence shows that smoking-obtained nicotine is indicated to improve cognition and mitigate certain symptoms of schizophrenia. In this study, we investigated whether chronic nicotine treatment alleviated MK-801-induced schizophrenia-like symptoms and cognitive impairment in mice. Mice were injected with MK-801 (0.2 mg/kg, i.p.), and the behavioral deficits were assessed using prepulse inhibition (PPI) and T-maze tests. We showed that MK-801 caused cognitive impairment accompanied by increased expression of PDZ and LIM domain 5 (Pdlim5), an adaptor protein that is critically associated with schizophrenia, in the prefrontal cortex (PFC). Pretreatment with nicotine (0.2 mg · kg-1 · d-1, s.c., for 2 weeks) significantly ameliorated MK-801-induced schizophrenia-like symptoms and cognitive impairment by reversing the increased Pdlim5 expression levels in the PFC. In addition, pretreatment with nicotine prevented the MK-801-induced decrease in CREB-regulated transcription coactivator 1 (CRTC1), a coactivator of CREB that plays an important role in cognition. Furthermore, MK-801 neither induced schizophrenia-like behaviors nor decreased CRTC1 levels in the PFC of Pdlim5-/- mice. Overexpression of Pdlim5 in the PFC through intra-PFC infusion of an adreno-associated virus AAV-Pdlim5 induced significant schizophrenia-like symptoms and cognitive impairment. In conclusion, chronic nicotine treatment alleviates schizophrenia-induced memory deficits in mice by regulating Pdlim5 and CRTC1 expression in the PFC.


Assuntos
Disfunção Cognitiva , Maleato de Dizocilpina , Camundongos , Animais , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Nicotina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Córtex Pré-Frontal/metabolismo , Cognição , Fatores de Transcrição/metabolismo
4.
J Stroke Cerebrovasc Dis ; 32(8): 107195, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247449

RESUMO

OBJECTIVE: To investigate the association of CYP metabolic pathway-related genetic polymorphisms with the susceptibility to ischemic stroke and stability of carotid plaque in southeast China. METHODS: We consecutively enrolled 294 acute ischemic stroke patients with carotid plaque and 282 controls from Wenling First People's Hospital. The patients were divided into the carotid vulnerable plaque group and stable plaque group according to the results of carotid B-mode ultrasonography. Polymorphisms of CYP3A5 (G6986A, rs776746), CYP2C9*2 (C430T, rs1799853), CYP2C9*3 (A1075C, rs1057910), and EPHX2 (G860A, rs751141) were determined using polymerase chain reaction and mass spectrometry analysis. RESULTS: EPHX2 GG may reduce the susceptibility to ischemic stroke (OR = 0.520, 95% CI: 0.288 ∼ 0.940, P = 0.030) and AA+AG may increase the risk for ischemic stroke (OR = 1.748, 95% CI: 1.001 ∼ 3.052, P = 0.050). The distribution of CYP3A5 genotypes showed significant differences between the vulnerable plaque and stable plaque groups (P = 0.026). Multivariate logistic regression analysis found that CYP3A5 GG could reduce the risk of vulnerable plaques (OR = 0.405, 95% CI: 0.178 ∼ 0.920, P = 0.031). CONCLUSION: EPHX2 G860A polymorphism may reduce the stroke susceptibility, while other SNPs of CYP genes are not associated with ischemic stroke in southeast China. Furthermore CYP3A5 polymorphism was related with carotid plaque instability.


Assuntos
Embolia , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Citocromo P-450 CYP3A , Citocromo P-450 CYP2C9 , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética , Polimorfismo de Nucleotídeo Único , China/epidemiologia , Placa Amiloide
5.
Cell Mol Neurobiol ; 42(7): 2407-2422, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196879

RESUMO

The only food and drug administration (FDA)-approved drug currently available for the treatment of acute ischemic stroke is tissue plasminogen activator (tPA), yet the therapeutic benefits of this drug are partially outweighed by the increased risk of hemorrhagic transformation (HT). Analysis of the NIH trial has shown that cigarette smoking protected tPA-treated patients from HT; however, the underlying mechanism is not clear. Nicotinic acetylcholine receptors (nAChR) has shown anti-inflammatory effect and modulation nAChR could be a strategy to reduce ischemia/reperfusion-induced blood-brain barrier (BBB) damage. Since melatonin could regulate the expression of α7nAchR and melatonin's neuroprotective effect against ischemic injury is mediated via α7nAChR modulation, here, we aim to test the hypothesis that melatonin reduces ischemia and reperfusion (I/R)-induced BBB damage through modulation of α7nACh receptor (α7nAChR). Mice were subjected to 1.5 h ischemia and 24 h reperfusion and at the onset of reperfusion, mice received intraperitoneal administration (i.p.) of either drug or saline. Mice were randomly assigned into five groups: Saline; α7nAChR agonist PNU282987; Melatonin; Melatonin+Methyllycaconitine (MLA, α7nAChR antagonist), and MLA group. BBB permeability was assessed by detecting the extravasation of Evan's blue and IgG. Our results showed that I/R significantly increased BBB permeability accompanied by occludin degradation, microglia activation, and high mobility group box 1 (HMGB1) release from the neuron. In addition, I/R significantly induced neuronal loss accompanied by the decrease of CREB-regulated transcriptional coactivator 1 (CRTC1) and p-CREB expression. Melatonin treatment significantly inhibited the above changes through modulating α7nAChR. Taken together, these results demonstrate that melatonin provides a protective effect on ischemia/reperfusion-induced BBB damage, at least in part, depending on the modulation of α7nAChR.


Assuntos
Proteína HMGB1 , AVC Isquêmico , Melatonina , Receptores Nicotínicos , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7 , Barreira Hematoencefálica , Isquemia , Microglia , Reperfusão , Ativador de Plasminogênio Tecidual , Fatores de Transcrição
6.
J Cell Mol Med ; 24(16): 9255-9266, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627929

RESUMO

Blood-brain barrier (BBB) integrity injury within the thrombolytic time window is becoming a critical target to reduce haemorrhage transformation (HT). We have previously reported that BBB damage was initially damaged in non-infarcted striatum after acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute ischaemic stroke could induce a significant increase of dopamine release in striatum, in current study, our aim is to investigate the role of dopamine receptor signal pathway in BBB integrity injury after acute ischaemia using rat middle cerebral artery occlusion model. Our data showed that 2-h ischaemia induced a significant increase of endogenous tissue plasminogen activator (tPA) in BBB injury area and intra-striatum infusion of tPA inhibitor neuroserpin, significantly alleviated 2-h ischaemia-induced BBB injury. In addition, intra-striatum infusion of D1 receptor antagonist SCH23390 significantly decreased ischaemia-induced upregulation of endogenous tPA, accompanied by decrease of BBB injury and occludin degradation. More important, inhibition of hypoxia-inducible factor-1 alpha with inhibitor YC-1 significantly decreased 2-h ischaemia-induced endogenous tPA upregulation and BBB injury. Taken together, our data demonstrate that acute ischaemia disrupted BBB through activation of endogenous tPA via HIF-1α upregulation, thus representing a new therapeutic target for protecting BBB after acute ischaemic stroke.


Assuntos
Barreira Hematoencefálica/lesões , Isquemia Encefálica/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , AVC Isquêmico/fisiopatologia , Receptores de Dopamina D1/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Doença Aguda , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Regulação para Cima
7.
Int J Neuropsychopharmacol ; 23(10): 687-699, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32516360

RESUMO

BACKGROUND: Fear memory is a fundamental capability for animals and humans to survive. Its impairment results in the disability to avoid danger. When memory is reactivated, a reconsolidation process, which can be disrupted by various stimuli, including inflammation, is required to become permanent. Nicotine has been shown to improve cognitive deficits induced by inflammation and other stimuli. Therefore, in the present study, we investigated the effect of nicotine on lipopolysaccharide (LPS)-induced impairment of fear memory reconsolidation and the underlying mechanism. METHODS: Step-through inhibitory avoidance task was recruited to study fear memory of rat, i.p. LPS (0.5 mg/kg) treatment was used to induce inflammation, and western blot and immunostaining were applied to detect protein expression and distribution in medial prefrontal cortex and hippocampus. RESULTS: Our data showed that LPS induced fear memory reconsolidation impairment without affecting retrieval. In addition, LPS significantly increased inflammation factors tumor necrosis factor-α and interleukin-1 beta and decreased CREB-regulated transcription coactivator 1 (CRTC1) expression and adenosine monophosphate-activated protein kinase (AMPK) activation in hippocampus. More importantly, LPS significantly decreased CRTC1 expression and AMPK activation in neurons by activating microglia cells. Of note, either nicotine treatment or activation of AMPK by intracerebroventricular infusion of metformin reduced LPS-induced impairment of fear memory reconsolidation and ameliorated inflammation factor tumor necrosis factor-α and interleukin-1 beta as well as the expression of CRTC1. CONCLUSIONS: In conclusion, our results showed that acute nicotine treatment alleviates LPS-induced impairment of fear memory reconsolidation through activation of AMPK and upregulation of CRTC1 in hippocampus.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Consolidação da Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Proteínas Quinases/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Disfunção Cognitiva/induzido quimicamente , Medo/fisiologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Regulação para Cima
8.
Cell Mol Neurobiol ; 39(8): 1151-1163, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31270712

RESUMO

Ischemic stroke often causes motor and cognitive deficits. Deregulated glia gap junction communication, which is reflected by increased protein levels of glial fibrillary acidic protein (GFAP) and connexin 43 (Cx43), has been observed in ischemic hippocampus and has been associated with cognitive impairment in animal stroke models. Here, we tested the hypothesis that reactive astrocytes-mediated loss of synaptophysin (SYP) and CREB-regulated transcription coactivator 1 (CRTC1) contribute to dysfunction in glia gap junction communication and memory impairment after ischemic stroke. Male Sprague-Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) with 7-day reperfusion. Fluorocitrate (1 nmol), the reversible inhibitor of the astrocytic tricarboxylic acid cycle, was injected into the right lateral ventricle of MCAO rats once every 2 days starting immediately before reperfusion. The Morris water maze was used to assess memory in conjunction with western blotting and immunostaining to detect protein expression and distribution in the hippocampus. Our results showed that ischemic stroke caused significant memory impairment accompanied by increased protein levels of GFAP and Cx43 in hippocampal tissue. In addition, the levels of several key memory-related important proteins including SYP, CRTC1, myelin basic protein and high-mobility group-box-1 were significantly reduced in the hippocampal tissue. Of note, inhibition of reactive astrocytes with fluorocitrate was shown to significantly reverse the above noted changes induced by ischemic stroke. Taken together, our findings demonstrate that inhibiting reactive astrocytes with fluorocitrate immediately before reperfusion may protect against ischemic stroke-induced memory impairment through the upregulation of CRTC1 and SYP.


Assuntos
Astrócitos/metabolismo , Citratos/farmacologia , Aprendizagem/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Acidente Vascular Cerebral/metabolismo , Sinaptofisina/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Conexina 43/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína HMGB1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Proteína Básica da Mielina/metabolismo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia , Fatores de Transcrição/metabolismo
9.
J Neurochem ; 132(6): 724-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683686

RESUMO

Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 µg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 µg/mL tPA, but not 5 µg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation.


Assuntos
Encéfalo/metabolismo , Caveolina 1/biossíntese , Células Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Microvasos/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Camundongos , Microvasos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
10.
J Neurochem ; 135(2): 357-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26263395

RESUMO

The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats.


Assuntos
Hipocampo/enzimologia , Metaloproteinases da Matriz/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Memória Espacial/efeitos dos fármacos , Área Tegmentar Ventral , Animais , Ativação Enzimática/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Microinjeções , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Oligopeptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
11.
J Neurol Neurosurg Psychiatry ; 86(11): 1267-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25632155

RESUMO

PURPOSE: Thrombolysis-related haemorrhagic transformation (HT) subtypes may have different prognostic implications. We aimed to analyse the impact of cerebral microbleeds (CMBs) burden on HT subtypes and outcome after intravenous thrombolysis. METHODS: We retrospectively examined clinical and radiological data from 333 consecutive patients with acute ischaemic stroke who underwent susceptibility-weighted imaging before intravenous thrombolysis. Logistic regression analysis was used to determine the impact of CMBs on HT subtypes and neurological outcome. RESULTS: We observed 596 CMBs in 119 (39.7%) patients on initial gradient-recalled echo scans. HT occurred in 88 (29.3%) patients, among which 62 were haemorrhagic infarction and 26 were parenchymal haemorrhage (PH). Logistic regression analysis indicated that the presence of extensive (≥ 3) CMBs was independently associated with PH (OR 6.704; 95% CI 2.054 to 21.883; p = 0.002) and poor clinical outcome (OR 2.281; 95% CI 1.022 to 5.093; p = 0.044). CONCLUSIONS: The presence of extensive (≥ 3) CMBs increased the risk of PH 24 h after intravenous thrombolysis, and predicted poor clinical outcome independently.


Assuntos
Hemorragia Cerebral/patologia , Hemorragia Cerebral/terapia , Terapia Trombolítica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Hemorragia Cerebral/diagnóstico , Infarto Cerebral/epidemiologia , Infarto Cerebral/etiologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Análise de Regressão , Reprodutibilidade dos Testes , Estudos Retrospectivos , Acidente Vascular Cerebral/terapia , Resultado do Tratamento , Adulto Jovem
12.
Eur Neurol ; 73(1-2): 37-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25377163

RESUMO

BACKGROUND/AIMS: It has been questioned whether patients with unruptured intracranial aneurysms (IAs) are at a greater risk for the development of intracerebral hemorrhage (ICH) following thrombolytic therapy. We thus performed a meta-analysis to better quantify the risk of post-thrombolysis ICH in patients with acute ischemic stroke and incidental IAs. METHODS: We searched PubMed, Web of Science and EMBASE for studies assessing ICH risk in patients with acute ischemic stroke treated with thrombolysis, in relation to the presence of pretreatment IAs. A fixed-effects model meta-analysis was performed. RESULTS: We identified four studies totaling 707 participants receiving intravenous thrombolysis. The prevalence of unruptured IAs was 6.8%. Pooled analysis demonstrates relative risk (RR) for the presence of unruptured IAs and the development of any ICH to be 1.204 (95% CI 0.709-2.043; p = 0.492; I(2) = 0.0%). The RR for sICH is 1.645 (95% CI 0.453-5.970; p = 0.449; I(2) = 28.1%). CONCLUSION: Intravenous thrombolysis was safe among patients with acute ischemic stroke and incidental unruptured IAs. Future prospective studies with much larger sample sizes are required to clarify the significance of the association between pre-existing unruptured IAs and the development of post-thrombolysis ICH.


Assuntos
Hemorragia Cerebral/induzido quimicamente , Aneurisma Intracraniano/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Hemorragia Cerebral/epidemiologia , Fibrinolíticos/efeitos adversos , Humanos , Estudos Prospectivos , Risco
13.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353058

RESUMO

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Assuntos
Memória de Curto Prazo , Nicotina , Humanos , Camundongos , Masculino , Animais , Memória de Curto Prazo/fisiologia , Nicotina/farmacologia , Nicotina/uso terapêutico , Nicotina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
14.
J Neurosci ; 32(9): 3044-57, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378877

RESUMO

Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.


Assuntos
Isquemia Encefálica/metabolismo , Caveolina 1/fisiologia , Claudinas/metabolismo , Metaloproteinase 2 da Matriz/fisiologia , Proteínas de Membrana/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/fisiopatologia , Linhagem Celular Tumoral , Células Cultivadas , Claudina-5 , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Ocludina , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
15.
J Cereb Blood Flow Metab ; 43(7): 1042-1059, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086081

RESUMO

Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.


Assuntos
Barreira Hematoencefálica , Disfunção Cognitiva , Humanos , Barreira Hematoencefálica/metabolismo , Envelhecimento/metabolismo , Disfunção Cognitiva/patologia , Inflamação/patologia , Cognição , Fatores de Transcrição/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-36736944

RESUMO

Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Tabagismo , Gravidez , Feminino , Humanos , Adolescente , Nicotina/efeitos adversos , Fumar/psicologia , Cognição , Transtornos da Memória
17.
Acta Pharm Sin B ; 13(12): 4667-4687, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045038

RESUMO

The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.

18.
Aging Dis ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962453

RESUMO

Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.

19.
Transl Stroke Res ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233908

RESUMO

Analysis of a National Institutes of Health (NIH) trial shows that cigarette smoking protected tissue plasminogen activator (tPA)-treated patients from hemorrhage transformation (HT); however, the underlying mechanism is not clear. Damage to the integrity of the blood-brain barrier (BBB) is the pathological basis of HT. Here, we investigated the molecular events of BBB damage after acute ischemic stroke (AIS) using in vitro oxygen-glucose deprivation (OGD) and in vivo mice middle cerebral artery occlusion (MCAO) models. Our results showed that the permeability of bEND.3 monolayer endothelial cells was significantly increased after being exposed to OGD for 2 h. Mice were subjected to 90-min ischemia with 45-min reperfusion, and BBB integrity was significantly damaged, accompanied by tight junction protein occludin degradation, downregulation of microRNA-21 (miR-21), transforming growth factor-ß (TGF-ß), phosphorylated Smad (p-Smad), plasminogen activator inhibitor-1 (PAI-1), and the upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that has been shown to regulate TGF-ß-Smad3 pathway. In addition, pretreatment with two-week nicotine significantly reduced AIS-induced BBB damage and its associated protein dysregulation via downregulating Pdlim5. Notably, AIS did not significantly induce BBB damage in Pdlim5 deficit mice, but overexpression of Pdlim5 in the striatum with adeno-associated virus produced BBB damage and associated protein dysregulation which could be ameliorated by two-week nicotine pretreatment. More important, AIS induced a significant miR-21 decrease, and miR-21 mimics treatment decreased AIS-induced BBB damage by decreasing Pdlim5. Together, these results demonstrate that nicotine treatment alleviates the AIS-compromised integrity of BBB by regulating Pdlim5.

20.
Neurobiol Dis ; 48(3): 309-16, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22813865

RESUMO

Blood brain barrier (BBB) damage that occurs within the thrombolytic time window is increasingly appreciated to negatively impact the safety and efficacy profiles of thrombolytic therapy for ischemic stroke. However, the spatiotemporal evolution of BBB damage in this early stroke stage and the underlying mechanisms remain unclear. Here, we investigated the topographical distribution of BBB damage and its association with tissue injury within the first 3 h after ischemia onset and the roles of matrix metalloproteinase (MMP)-2/9 in this process. Rats were subjected to 1, 2, or 3 h of middle cerebral artery occlusion (MCAO) followed by 10 min reperfusion with fluorescence-labeled dextran as BBB permeability marker. Acute tissue infarction was evidenced by staining defect with triphenyltetrazolium chloride (TTC). Cerebral blood flow (CBF) was measured by magnetic resonance imaging. MMP-2/9 were assessed by gel and in situ zymography. After 2-h MCAO, dextran leakage was seen in the ischemic ventromedial striatum and the preoptic area which showed ~70% CBF reduction, and expanded to other MCA regions including the cortex after 3-h MCAO. Interestingly, high (2000 kDa) and low (70 kDa) molecular weight dextrans displayed almost identical leakage patterns. Different from BBB damage, tissue infarction was first seen in the ischemic dorsal striatum and the parietal/insular cortex which experienced ~90% CBF reduction. Increased gelatinolytic activity colocalized with dextran leakage, and MMP-2 was found to be the major enzymatic source on gelatin zymograms. Pretreatment with MMP inhibitor GM6001 significantly reduced dextran leakage induced by 2-h and 3-h MCAO. Taken together, our findings reveal substantial differences in the topographic distribution of BBB damage and tissue infarction within the first 3 h after MCAO onset. Unlike ischemic neuronal damage, BBB damage appears to develop faster in brain regions with moderately severe ischemia, and MMP-2 contributes to this early ischemic BBB damage.


Assuntos
Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Circulação Cerebrovascular , Infarto da Artéria Cerebral Média/patologia , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa