Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(9): 2572-2590, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764676

RESUMO

Cover crops have been reported as one of the most effective practices to increase soil organic carbon (SOC) for agroecosystems. Impacts of cover crops on SOC change vary depending on soil properties, climate, and management practices, but it remains unclear how these control factors affect SOC benefits from cover crops, as well as which management practices can maximize SOC benefits. To address these questions, we used an advanced process-based agroecosystem model, ecosys, to assess the impacts of winter cover cropping on SOC accumulation under different environmental and management conditions. We aimed to answer the following questions: (1) To what extent do cover crops benefit SOC accumulation, and how do SOC benefits from cover crops vary with different factors (i.e., initial soil properties, cover crop types, climate during the cover crop growth period, and cover crop planting and terminating time)? (2) How can we enhance SOC benefits from cover crops under different cover crop management options? Specifically, we first calibrated and validated the ecosys model at two long-term field experiment sites with SOC measurements in Illinois. We then applied the ecosys model to six cover crop field experiment sites spanning across Illinois to assess the impacts of different factors on SOC accumulation. Our modeling results revealed the following findings: (1) Growing cover crops can bring SOC benefits by 0.33 ± 0.06 MgC ha-1  year-1 in six cover crop field experiment sites across Illinois, and the SOC benefits are species specific to legume and non-legume cover crops. (2) Initial SOC stocks and clay contents had overall small influences on SOC benefits from cover crops. During the cover crop growth period (i.e., winter and spring in the US Midwest), high temperature increased SOC benefits from cover crops, while the impacts from larger precipitation on SOC benefits varied field by field. (3) The SOC benefits from cover crops can be maximized by optimizing cover crop management practices (e.g., selecting cover crop types and controlling cover crop growth period) for the US Midwestern maize-soybean rotation system. Finally, we discussed the economic and policy implications of adopting cover crops in the US Midwest, including that current economic incentives to grow cover crops may not be sufficient to cover costs. This study systematically assessed cover crop impacts for SOC change in the US Midwest context, while also demonstrating that the ecosys model, with rigorous validation using field experiment data, can be an effective tool to guide the adaptive management of cover crops and quantify SOC benefits from cover crops. The study thus provides practical tools and insights for practitioners and policy-makers to design cover crop related government agricultural policies and incentive programs for farmers and agri-food related industries.


Assuntos
Carbono , Solo , Agricultura , Produtos Agrícolas , Zea mays
2.
Glob Chang Biol ; 24(2): e522-e533, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29110424

RESUMO

Elevated atmospheric CO2 concentrations ([CO2 ]) are expected to increase C3 crop yield through the CO2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops.


Assuntos
Dióxido de Carbono , Mudança Climática , Secas , Glycine max/crescimento & desenvolvimento , Agricultura , Meio-Oeste dos Estados Unidos
3.
Glob Chang Biol ; 24(10): 4718-4730, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29901245

RESUMO

A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. Using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security.


Assuntos
Agricultura , Grão Comestível/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Mudança Climática , Secas , Abastecimento de Alimentos , Previsões , Temperatura Alta
4.
Glob Chang Biol ; 23(7): 2687-2704, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28063186

RESUMO

Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.


Assuntos
Mudança Climática , Glycine max , Zea mays , Produtos Agrícolas , Secas
5.
Glob Chang Biol ; 22(9): 3112-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27251794

RESUMO

Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agricultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for daily mean temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio, and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algorithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordinate the interactions among multiple stresses. Our study identifies the proficiency with which different model formulations capture the impacts of heat and drought stress on maize biomass and yield production. The framework presented here can be applied to other modeled processes and used to improve yield predictions of other crops with a wide variety of crop models.


Assuntos
Algoritmos , Secas , Zea mays , Produtos Agrícolas , Temperatura Alta
6.
Nat Commun ; 15(1): 357, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191521

RESUMO

Accurate and cost-effective quantification of the carbon cycle for agroecosystems at decision-relevant scales is critical to mitigating climate change and ensuring sustainable food production. However, conventional process-based or data-driven modeling approaches alone have large prediction uncertainties due to the complex biogeochemical processes to model and the lack of observations to constrain many key state and flux variables. Here we propose a Knowledge-Guided Machine Learning (KGML) framework that addresses the above challenges by integrating knowledge embedded in a process-based model, high-resolution remote sensing observations, and machine learning (ML) techniques. Using the U.S. Corn Belt as a testbed, we demonstrate that KGML can outperform conventional process-based and black-box ML models in quantifying carbon cycle dynamics. Our high-resolution approach quantitatively reveals 86% more spatial detail of soil organic carbon changes than conventional coarse-resolution approaches. Moreover, we outline a protocol for improving KGML via various paths, which can be generalized to develop hybrid models to better predict complex earth system dynamics.

7.
Nat Food ; 4(8): 654-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37591963

RESUMO

Agricultural irrigation induces greenhouse gas emissions directly from soils or indirectly through the use of energy or construction of dams and irrigation infrastructure, while climate change affects irrigation demand, water availability and the greenhouse gas intensity of irrigation energy. Here, we present a scoping review to elaborate on these irrigation-climate linkages by synthesizing knowledge across different fields, emphasizing the growing role climate change may have in driving future irrigation expansion and reinforcing some of the positive feedbacks. This Review underscores the urgent need to promote and adopt sustainable irrigation, especially in regions dominated by strong, positive feedbacks.


Assuntos
Gases de Efeito Estufa , Retroalimentação , Irrigação Agrícola , Mudança Climática , Conhecimento
8.
Sci Rep ; 12(1): 16043, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192406

RESUMO

Achieving food security in sub-Saharan Africa (SSA) is a multidimensional challenge. SSA reliance on food imports is expected to grow in the coming decades to meet the population's demand, projected to double to over 2 billion people by 2050. In addition, climate change is already affecting food production and supply chains across the region. Addressing these multiple food security challenges will necessitate rapid enhancements in agricultural productivity, which is influenced by a host of demographic, agronomic, and climatic factors. We use statistical approaches to examine rainfed maize in Kenya, where maize cultivation and consumption are widespread and central to livelihoods and national food security. We find that improving a suite of agronomic factors, such as applying fertilizer, planting certified seeds, and extension services, will have a greater effect on rainfed maize productivity than demographics and can offset the effects of climate change. These findings could also offer insights into similar challenges for other crops in Kenya and other SSA countries.


Assuntos
Fertilizantes , Zea mays , Agricultura/métodos , Mudança Climática , Produtos Agrícolas , Humanos , Quênia
9.
Nat Commun ; 13(1): 5591, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180462

RESUMO

Variety adaptation to future climate for wheat is important but lacks comprehensive understanding. Here, we evaluate genetic advancement under current and future climate using a dataset of wheat breeding nurseries in North America during 1960-2018. Results show that yields declined by 3.6% per 1 °C warming for advanced winter wheat breeding lines, compared with -5.5% for the check variety, indicating a superior climate-resilience. However, advanced spring wheat breeding lines showed a 7.5% yield reduction per 1 °C warming, which is more sensitive than a 7.1% reduction for the check variety, indicating climate resilience is not improved and may even decline for spring wheat. Under future climate of SSP scenarios, yields of winter and spring wheat exhibit declining trends even with advanced breeding lines, suggesting future climate warming could outpace the yield gains from current breeding progress. Our study highlights that the adaptation progress following the current wheat breeding strategies is challenging.


Assuntos
Mudança Climática , Triticum , América do Norte , Melhoramento Vegetal , Estações do Ano , Triticum/genética
10.
Nat Food ; 3(1): 57-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118481

RESUMO

Crop pests and diseases (CPDs) are emerging threats to global food security, but trends in the occurrence of pests and diseases remain largely unknown due to the lack of observations for major crop producers. Here, on the basis of a unique historical dataset with more than 5,500 statistical records, we found an increased occurrence of CPDs in every province of China, with the national average rate of CPD occurrence increasing by a factor of four (from 53% to 218%) during 1970-2016. Historical climate change is responsible for more than one-fifth of the observed increment of CPD occurrence (22% ± 17%), ranging from 2% to 79% in different provinces. Among the climatic factors considered, warmer nighttime temperatures contribute most to the increasing occurrence of CPDs (11% ± 9%). Projections of future CPDs show that at the end of this century, climate change will lead to an increase in CPD occurrence by 243% ± 110% under a low-emissions scenario (SSP126) and 460% ± 213% under a high-emissions scenario (SSP585), with the magnitude largely dependent on the impacts of warmer nighttime temperatures and decreasing frost days. This observation-based evidence highlights the urgent need to accurately account for the increasing risk of CPDs in mitigating the impacts of climate change on food production.

11.
Nat Plants ; 6(4): 338-348, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296143

RESUMO

Predicting the consequences of manipulating genotype (G) and agronomic management (M) on agricultural ecosystem performances under future environmental (E) conditions remains a challenge. Crop modelling has the potential to enable society to assess the efficacy of G × M technologies to mitigate and adapt crop production systems to climate change. Despite recent achievements, dedicated research to develop and improve modelling capabilities from gene to global scales is needed to provide guidance on designing G × M adaptation strategies with full consideration of their impacts on both crop productivity and ecosystem sustainability under varying climatic conditions. Opportunities to advance the multiscale crop modelling framework include representing crop genetic traits, interfacing crop models with large-scale models, improving the representation of physiological responses to climate change and management practices, closing data gaps and harnessing multisource data to improve model predictability and enable identification of emergent relationships. A fundamental challenge in multiscale prediction is the balance between process details required to assess the intervention and predictability of the system at the scales feasible to measure the impact. An advanced multiscale crop modelling framework will enable a gene-to-farm design of resilient and sustainable crop production systems under a changing climate at regional-to-global scales.


Assuntos
Aclimatação , Mudança Climática , Produtos Agrícolas , Modelos Biológicos
13.
Annu Rev Plant Biol ; 70: 781-808, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035829

RESUMO

The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2 concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.


Assuntos
Produtos Agrícolas , Água , Cruzamento , Dióxido de Carbono , Fotossíntese , Folhas de Planta , Transpiração Vegetal
14.
Fundam Res ; 3(2): 149-150, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38932926
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa