Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(6): 060501, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213196

RESUMO

As an important degree of freedom (d.o.f.) in photonic integrated circuits, the orthogonal transverse mode provides a promising and flexible way to increase communication capability, for both classical and quantum information processing. To construct large-scale on-chip multimode multi-d.o.f.s quantum systems, a transverse mode-encoded controlled-NOT (CNOT) gate is necessary. Here, with the help of our new transverse mode-dependent directional coupler and attenuator, we demonstrate the first multimode implementation of a 2-qubit quantum gate. The ability of the gate is demonstrated by entangling two separated transverse mode qubits with an average fidelity of 0.89±0.02 and the achievement of 10 standard deviations of violations in the quantum nonlocality verification. In addition, a fidelity of 0.82±0.01 is obtained from quantum process tomography used to completely characterize the CNOT gate. Our work paves the way for universal transverse mode-encoded quantum operations and large-scale multimode multi-d.o.f.s quantum systems.

2.
Phys Rev Lett ; 124(25): 257701, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639759

RESUMO

In silicon quantum dots (QDs), at a certain magnetic field commonly referred to as the "hot spot," the electron spin relaxation rate (T_{1}^{-1}) can be drastically enhanced due to strong spin-valley mixing. Here, we experimentally find that with a valley splitting of 78.2±1.6 µeV, this hot spot in spin relaxation can be suppressed by more than 2 orders of magnitude when the in-plane magnetic field is oriented at an optimal angle, about 9° from the [100] sample plane. This directional anisotropy exhibits a sinusoidal modulation with a 180° periodicity. We explain the magnitude and phase of this modulation using a model that accounts for both spin-valley mixing and intravalley spin-orbit mixing. The generality of this phenomenon is also confirmed by tuning the electric field and the valley splitting up to 268.5±0.7 µeV.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa