Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
EMBO J ; 42(13): e112542, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37218505

RESUMO

Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance ß-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.


Assuntos
Coronavirus , Coronavirus/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Ácidos Graxos/metabolismo
2.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660993

RESUMO

Zika virus (ZIKV) has gained notoriety in recent years because there are no targeted therapies or vaccines available so far. Caveolin-1 (Cav-1) in host cells plays crucial functions in the invasion of many viruses. However, its specific involvement in ZIKV infection has remained unclear. Here, we reveal that depleting Cav-1 leads to a substantial reduction in ZIKV RNA levels, protein expression and viral particle production, indicating that ZIKV exploits Cav-1 for its infection. By dissecting each stage of the viral life cycle, we unveil that, unlike its invasion role in many other viruses, Cav-1 depletion selectively impairs ZIKV replication, resulting in altered replication dynamics and reduced strand-specific RNA levels, but does not affect viral entry, maturation and release. These results reveal an unforeseen function of Cav-1 in facilitating ZIKV replication, which provides new insights into the intricate interaction between Cav-1 and ZIKV and underscores Cav-1 as a potential candidate for anti-ZIKV approaches.


Assuntos
Caveolina 1 , RNA Viral , Replicação Viral , Infecção por Zika virus , Zika virus , Caveolina 1/metabolismo , Caveolina 1/genética , Zika virus/fisiologia , Zika virus/metabolismo , Humanos , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , Interações Hospedeiro-Patógeno , Chlorocebus aethiops , Células Vero , Células HEK293 , Internalização do Vírus , Replicação do RNA
3.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594661

RESUMO

Bacterial infection is a major threat to human health, with infections resulting in considerable mortality, urging the need for a more profound understanding of bacteria-host interactions. During infection of cells, host cytoskeletal networks constantly interact with bacteria and are integral to their uptake. Vimentin, an intermediate filament protein, is one such cytoskeletal component that interacts with bacteria during infection. Although vimentin is predominantly present in the cytoplasm, it also appears in a secreted form or at the surface of multiple cell types, including epithelial cells, endothelial cells, macrophages and fibroblasts. As a cytoplasmic protein, vimentin participates in bacterial transportation and the consequential immune-inflammatory responses. When expressed on the cell surface, vimentin can be both pro- and anti-bacterial, favoring bacterial invasion in some contexts, but also limiting bacterial survival in others. Vimentin is also secreted and located extracellularly, where it is primarily involved in bacterial-induced inflammation regulation. Reciprocally, bacteria can also manipulate the fate of vimentin in host cells. Given that vimentin is not only involved in bacterial infection, but also the associated life-threatening inflammation, the use of vimentin-targeted drugs might offer a synergistic advantage. In this Review, we recapitulate the abundant evidence on vimentin and its dynamic changes in bacterial infection and speculate on its potential as an anti-bacterial therapeutic target.


Assuntos
Infecções Bacterianas , Filamentos Intermediários , Humanos , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Células Endoteliais/metabolismo , Inflamação
4.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622381

RESUMO

Emerging pathogen infections, such as Zika virus (ZIKV), pose an increasing threat to human health, but the role of mechanobiological attributes of host cells during ZIKV infection is largely unknown. Here, we reveal that ZIKV infection leads to increased contractility of host cells. Importantly, we investigated whether host cell contractility contributes to ZIKV infection efficacy, from both the intracellular and extracellular perspective. By performing drug perturbation and gene editing experiments, we confirmed that disruption of contractile actomyosin compromises ZIKV infection efficiency, viral genome replication and viral particle production. By culturing on compliant matrix, we further demonstrate that a softer substrate, leading to less contractility of host cells, compromises ZIKV infection, which resembles the effects of disrupting intracellular actomyosin organization. Together, our work provides evidence to support a positive correlation between host cell contractility and ZIKV infection efficacy, thus unveiling an unprecedented layer of interplay between ZIKV and the host cell.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Actomiosina , Citoesqueleto de Actina , Biofísica
5.
Bioessays ; 45(8): e2200225, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254735

RESUMO

During immune responses against invading pathogenic bacteria, the cytoskeleton network enables macrophages to implement multiple essential functions. To protect the host from infection, macrophages initially polarize to adopt different phenotypes in response to distinct signals from the microenvironment. The extracellular stimulus regulates the rearrangement of the cytoskeleton, thereby altering the morphology and migratory properties of macrophages. Subsequently, macrophages degrade the extracellular matrix (ECM) and migrate toward the sites of infection to directly contact invading pathogens, during which the involvement of cytoskeleton-based structures such as podosomes and lamellipodia is indispensable. Ultimately, macrophages execute the function of phagocytosis to engulf and eliminate the invading pathogens. Phagocytosis is a complex process that requires the cooperation of cytoskeleton-enriched super-structures, such as filopodia, lamellipodia, and phagocytic cup. This review presents an overview of cytoskeletal regulations in macrophage polarization, ECM degradation, migration, and phagocytosis, highlighting the pivotal role of the cytoskeleton in host defense against infection.


Assuntos
Citoesqueleto , Macrófagos , Macrófagos/metabolismo , Citoesqueleto/metabolismo , Fagocitose/fisiologia , Membrana Celular , Microtúbulos
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193960

RESUMO

Emerging microbe infections, such as Zika virus (ZIKV), pose an increasing threat to human health. Investigations on ZIKV replication have revealed the construction of replication complexes (RCs), but the role of cytoskeleton in this process is largely unknown. Here, we investigated the function of cytoskeletal intermediate filament protein vimentin in the life cycle of ZIKV infection. Using advanced imaging techniques, we uncovered that vimentin filaments undergo drastic reorganization upon viral protein synthesis to form a perinuclear cage-like structure that embraces and concentrates RCs. Genetic removal of vimentin markedly disrupted the integrity of RCs and resulted in fragmented subcellular dispersion of viral proteins. This led to reduced viral genome replication, viral protein production, and release of infectious virions, without interrupting viral binding and entry. Furthermore, mass spectrometry and RNA-sequencing screens identified interactions and interplay between vimentin and hundreds of endoplasmic reticulum (ER)-resident RNA-binding proteins. Among them, the cytoplasmic-region of ribosome receptor binding protein 1, an ER transmembrane protein that directly binds viral RNA, interacted with and was regulated by vimentin, resulting in modulation of ZIKV replication. Together, the data in our work reveal a dual role for vimentin as a structural element for RC integrity and as an RNA-binding-regulating hub during ZIKV infection, thus unveiling a layer of interplay between Zika virus and host cell.


Assuntos
Vimentina/metabolismo , Infecção por Zika virus/metabolismo , Animais , Linhagem Celular , China , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Filamentos Intermediários/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vimentina/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Zika virus/metabolismo , Zika virus/patogenicidade , Zika virus/fisiologia , Infecção por Zika virus/virologia
7.
Subcell Biochem ; 106: 333-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159233

RESUMO

The cytoskeleton, which includes actin filaments, microtubules, and intermediate filaments, is one of the most important networks in the cell and undertakes many fundamental life activities. Among them, actin filaments are mainly responsible for maintaining cell shape and mediating cell movement, microtubules are in charge of coordinating all cargo transport within the cell, and intermediate filaments are mainly thought to guard against external mechanical pressure. In addition to this, cytoskeleton networks are also found to play an essential role in multiple viral infections. Due to the COVID-19 epidemic, including SARS-CoV-2, SARS-CoV and MERS-CoV, so many variants have caused wide public concern, that any virus infection can potentially bring great harm to human beings and society. Therefore, it is of great importance to study coronavirus infection and develop antiviral drugs and vaccines. In this chapter, we summarize in detail how the cytoskeleton responds and participates in coronavirus infection by analyzing the possibility of the cytoskeleton and its related proteins as antiviral targets, thereby providing ideas for finding more effective treatments.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Citoesqueleto , Microtúbulos/metabolismo , Infecções por Coronavirus/metabolismo , Filamentos Intermediários , Citoesqueleto de Actina
8.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459599

RESUMO

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Assuntos
Movimento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
9.
PLoS Pathog ; 17(7): e1009746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297778

RESUMO

HCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection. We showed HCV release, but not entry, genome replication or virion assembly, is significantly blocked when cells are cultured in galactose, leading to accumulation of intracellular infectious virions within multivesicular body (MVB). Blockade of the MVB-lysosome fusion or treatment with pro-inflammatory cytokines promotes HCV release in galactose. Furthermore, we found this glycometabolic regulation of HCV release is mediated by MAPK-p38 phosphorylation. Finally, we showed HCV cell-to-cell transmission is not affected by glycometabolism, suggesting that HCV cell-to-supernatant release and cell-to-cell transmission are two mechanistically distinct pathways. In summary, we demonstrated glycometabolism regulates the efficiency and route of HCV release. We proposed HCV may exploit the metabolic state in hepatocytes to favor its spread through the cell-to-cell transmission in vivo to evade immune response.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Liberação de Vírus/fisiologia , Linhagem Celular Tumoral , Humanos
10.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
11.
J Cell Sci ; 134(5)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154171

RESUMO

Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.


Assuntos
Filamentos Intermediários , Viroses , Citoesqueleto , Humanos , Vimentina/genética , Replicação Viral
12.
Eur J Immunol ; 51(7): 1672-1685, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837956

RESUMO

UNC93B1 is a trafficking chaperone of endosomal Toll-like receptors (TLRs) and plays an essential role in the TLR-mediated innate signaling. However, whether it is also involved in other innate immune sensing or cellular pathways remains largely unexplored. Here we investigated the role of UNC93B1 in cytosolic DNA-triggered cGAS-STING signaling in mouse and human cell lines. We showed that while UNC93B1 deficiency blunts the signal transduction by TLR3, it augments innate immune responses to cytosolic DNA stimulation and DNA virus infection. Mechanistic study reveals a distinct action of UNC93B1 upon STING, but not other parts along the cGAS-STING-TBK1 axis, through regulating the protein level of STING at both resting and cytosolic DNA-stimulated conditions. UNC93B1 can directly interact and traffic along with STING, and the disruption of this interaction causes accumulation of STING that subsequently leads to augmented signaling responses upon its activation. These findings reveal a new function of UNC93B1 in negatively regulating STING-mediated signaling responses.


Assuntos
Citosol/metabolismo , DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Endossomos/metabolismo , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células THP-1
13.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925176

RESUMO

Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts' response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions.


Assuntos
Fibroblastos/metabolismo , Vimentina/metabolismo , Cicatrização/fisiologia , Adipócitos/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular , Linhagem Celular , Movimento Celular , Exossomos/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pressão Osmótica/fisiologia , Estresse Mecânico , Vimentina/fisiologia
14.
Biochem J ; 476(20): 2953-2963, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31657439

RESUMO

The formin FHOD1 acts as a nucleating, capping and bundling protein of actin filaments. In cells, release from the C-terminal diaphanous autoregulatory domain (DAD) of FHOD1 stimulates the protein into the active form. However, the cellular physiological relevance of active form FHOD1 and the phenotypic regulation by FHOD1 depletion are not completely understood. Here, we show that in contrast with the cytosolic diffused expression of auto-inhibited FHOD1, active FHOD1 by C-terminal truncation was recruited into all three types of actin stress fibers in human osteosarcoma cells. Notably, the recruited active FHOD1 was more incorporated with myosin II than α-actinin, and associated with both naïve and mature focal adhesions. Active FHOD1 displayed faster turnover than actin molecules on ventral stress fibers. Moreover, we witnessed the emergence of active FHOD1 from the cell periphery, which subsequently moved centripetally together with transverse arcs. Furthermore, FHOD1 knockdown resulted in defective maturation of actomyosin bundles and subsequently longer non-contractile dorsal stress fibers, whereas the turnover of both actin and myosin II were maintained normally. Importantly, the loss of FHOD1 led to slower actin centripetal flow, resulting in abnormal cell spreading and migration defects. Taken together, these results reveal a critical role of FHOD1 in temporal- and spatial- control of the morphology and dynamics of functional actin stress fibers during variable cell behavior.


Assuntos
Actinas/metabolismo , Proteínas Fetais/metabolismo , Forminas/metabolismo , Fibras de Estresse/metabolismo , Actinina/metabolismo , Actinas/genética , Actomiosina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Citosol/metabolismo , Proteínas Fetais/genética , Adesões Focais/metabolismo , Forminas/genética , Técnicas de Silenciamento de Genes , Humanos , Cinética , Miosina Tipo II/metabolismo , Imagem Óptica , Domínios Proteicos , Transdução de Sinais/genética , Transfecção
15.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050149

RESUMO

Both the mechanosensitive vimentin cytoskeleton and endocytic caveolae contribute to various active processes such as cell migration, morphogenesis, and stress response. However, the crosstalk between these two systems has remained elusive. Here, we find that the subcellular expression between vimentin and caveolin-1 is mutual exclusive, and vimentin filaments physically arrest the cytoplasmic motility of caveolin-1 vesicles. Importantly, vimentin depletion increases the phosphorylation of caveolin-1 on site Tyr14, and restores the compromised cell migration rate and directionality caused by caveolin-1 deprivation. Moreover, upon hypo-osmotic shock, vimentin-knockout recovers the reduced intracellular motility of caveolin-1 vesicles. In contrary, caveolin-1 depletion shows no effect on the expression, phosphorylation (on sites Ser39, Ser56, and Ser83), distribution, solubility, and cellular dynamics of vimentin filaments. Taken together, our data reveals a unidirectional regulation of vimentin to caveolin-1, at least on the cellular level.


Assuntos
Caveolina 1/metabolismo , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Vesículas Citoplasmáticas/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Filamentos Intermediários/genética , Espaço Intracelular/metabolismo , Estresse Oxidativo , Fosforilação , Vimentina/genética , Cicatrização
16.
J Cell Biochem ; 120(8): 13168-13176, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30887571

RESUMO

Intermediate filaments (IFs) play a key role in the control of cell structure and morphology, cell mechano-responses, migration, proliferation, and apoptosis. However, the mechanisms regulating IFs organization in motile adhesive cells under certain physical/pathological conditions remain to be fully understood. In this study, we found hypo-osmotic-induced stress results in a dramatic but reversible rearrangement of the IF network. Vimentin and nestin IFs are partially depolymerized as they are redistributed throughout the cell cytoplasm after hypo-osmotic shock. This spreading of the IFs requires an intact microtubule network and the motor protein associated transportation. Both nocodazole treatment and depletion of kinesin-1 (KIF5B) block the hypo-osmotic shock-induced rearrangement of IFs showing that the dynamic behavior of IFs largely depends on microtubules and kinesin-dependent transport. Moreover, we show that cell survival rates are dramatically decreased in response to hypo-osmotic shock, which was more severe by vimentin IFs depletion, indicating its contribution to osmotic endurance. Collectively, these results reveal a critical role of vimentin IFs under hypotonic stress and provide evidence that IFs are important for the defense mechanisms during the osmotic challenge.


Assuntos
Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , Imunofluorescência , Células HeLa , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , Pressão Osmótica/efeitos dos fármacos
17.
J Hepatol ; 71(1): 52-61, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30880226

RESUMO

BACKGROUND & AIMS: Assembly of infectious hepatitis C virus (HCV) particles is known to involve host lipoproteins, giving rise to unique lipo-viro-particles (LVPs), but proteome studies now suggest that additional cellular proteins are associated with HCV virions or other particles containing the viral envelope glycoprotein E2. Many of these host cell proteins are common markers of exosomes, most notably the intracellular adaptor protein syntenin, which is required for exosome biogenesis. We aimed to elucidate the role of syntenin/E2 in HCV infection. METHODS: Using cell culture-derived HCV, we studied the biogenesis and function of E2-coated exosomes in both hepatoma cells and primary human hepatocytes (PHHs). RESULTS: Knockout of syntenin had a negligible impact on HCV replication and virus production, whereas ectopic expression of syntenin at physiological levels reduced intracellular E2 abundance, while concomitantly increasing the secretion of E2-coated exosomes. Importantly, cells expressing syntenin and HCV structural proteins efficiently released exosomes containing E2 but lacking the core protein. Furthermore, infectivity of HCV released from syntenin-expressing hepatoma cells and PHHs was more resistant to neutralization by E2-specific antibodies and chronic-phase patient serum. We also found that high E2/syntenin levels in sera correlate with lower serum neutralization capability. CONCLUSIONS: E2- and syntenin-containing exosomes are a major type of particle released from cells expressing high levels of syntenin. Efficient production of E2-coated exosomes renders HCV infectivity less susceptible to antibody neutralization in hepatoma cells and PHHs. LAY SUMMARY: This study identifies a key role for syntenin in the regulation of E2 secretion via exosomes. Efficient production of E2-coated exosomes was shown to make hepatitis C virus less sensitive to antibody neutralization. These results may have implications for the development of a hepatitis C virus vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Exossomos/metabolismo , Hepacivirus/fisiologia , Hepatite C , Sinteninas/metabolismo , Proteínas do Envelope Viral/biossíntese , Células Cultivadas , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Vírion/fisiologia
18.
J Cell Sci ; 130(5): 892-902, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096473

RESUMO

The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous 'unit length form' vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells.


Assuntos
Actinas/metabolismo , Filamentos Intermediários/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fibras de Estresse/metabolismo , Vimentina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Fosforilação
19.
Biochem Biophys Res Commun ; 507(1-4): 161-167, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30415776

RESUMO

Both the cytoskeletal intermediate filaments (IFs) and cytoplasmic caveolae contribute to active processes such as cell migration, morphogenesis and vesicular trafficking, but the interplay between these two systems has remained elusive. Here, we find that vimentin and nestin IFs interact with caveolae central component caveolin-1 (CAV-1) and importantly, restrain the intracellular trafficking of CAV-1 positive vesicles by serving as a physical barrier. Consequently, CAV-1 vesicles show less density and mobility in vimentin IFs enriched region, which is a substrate stiffness independent process. Moreover, depletion of vimentin IFs releases the slow movement proportion of CAV-1 positive vesicles and thus increases their cytoplasmic dynamics, whereas the expression of caveolae-associated protein CAV-1, CAV-2 and cavin-1 were unaffected. Collectively, these results reveal a negative role of IFs in regulating the trafficking of intracellular CAV-1 vesicles in live cells.


Assuntos
Caveolina 1/metabolismo , Filamentos Intermediários/metabolismo , Espaço Intracelular/metabolismo , Vimentina/metabolismo , Cavéolas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Humanos , Transporte Proteico
20.
PLoS Pathog ; 11(3): e1004711, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25747942

RESUMO

Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.


Assuntos
Crinivirus/metabolismo , Proteína Catiônica de Eosinófilo/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Iridovirus/metabolismo , Interferência de RNA/fisiologia , Proteínas Virais/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/virologia , Immunoblotting , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA de Cadeia Dupla , RNA Interferente Pequeno/biossíntese , Nicotiana/virologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa