Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 236, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396055

RESUMO

The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset. The juxtaposition of information on prey found in stomachs and in the environment provides an opportunity to quantify trophic interactions across different environmental contexts and investigate how fish foraging behaviour adapts to changes in their environment, such as an increase in temperature. The compilation of body mass and taxonomic information for all species allows approaching these new questions using either a taxonomic (based on species identity) or functional trait (based on body mass) approach.


Assuntos
Peixes , Conteúdo Gastrointestinal , Animais , Países Bálticos , Oceanos e Mares
2.
Nat Clim Chang ; 14(4): 387-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617202

RESUMO

Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa