Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Am Chem Soc ; 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39501436

RESUMO

Catalytic upcycling of plastic wastes offers a sustainable circular economy. Selective conversion of the most widely used polyester, polyethylene terephthalate (PET), under ambient conditions is practically attractive because of low energy consumption and carbon footprint. Here, we report selective, aerobic conversion of PET in a flow reactor using TiO2 photocatalyst modified with atomic Pd and metallic PdCu (Pd1Cu0.4-TiO2) under ambient conditions. We demonstrate that atomically synergistic Pd1Cu0.4-TiO2 exhibits a formate evolution of 4707 µmol g-1 h-1 with a selectivity of 92.3% together with trace COx released. Importantly, we show that this corresponds to 10-103 times greater activity than reported photocatalytic systems. We confirm that synergy between atomic Pd and metallic PdCu boosts directional charge transfer and oxygen-induced C-C cleavage and inhibits product decomposition. We conclude that photocatalytic waste plastic-to-chemical conversion is sustainable via targeted engineering of atomically synergistic catalysts and reaction systems.

2.
Angew Chem Int Ed Engl ; 63(9): e202317941, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38197798

RESUMO

Wadsley-Roth niobium oxide phases have attracted extensive research interest recently as promising battery anodes. We have synthesized the niobium-molybdenum oxide shear phase (Nb, Mo)13 O33 with superior electrochemical Li-ion storage performance, including an ultralong cycling lifespan of at least 15000 cycles. During electrochemical cycling, a reversible single-phase solid-solution reaction with lithiated intermediate solid solutions is demonstrated using in situ X-ray diffraction, with the valence and short-range structural changes of the electrode probed by in situ Nb and Mo K-edge X-ray absorption spectroscopy. This work reveals that the superior stability of niobium molybdenum oxides is underpinned by changes in octahedral distortion during electrochemical reactions, and we report an in-depth understanding of how this stabilizes the oxide structure during cycling with implications for future long-life battery material design.

3.
Angew Chem Int Ed Engl ; : e202415797, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438270

RESUMO

Oxygen evolution and reduction reactions (OER and ORR) play crucial roles in energy conversion processes such as water splitting and air batteries, where spin dynamics inherently influence their efficiency. However, the specific contribution of spin has yet to be fully understood. In this study, we intentionally introduce a spin channel through the transformation of trigonal antiferromagnetic SrCoO2.5 into cubic ferromagnetic SrCoO3, aiming to deepen our understanding of spin dynamics in catalytic reactions. Based on the results from spherical-aberration-corrected microscope, synchrotron absorption spectra, magnetic characterizations, and density functional theory calculations, it is revealed that surface electron transfer is predominantly governed by local geometric structures, while the presence of the spin channel significantly enhances the bulk transport of spin-polarized electrons, particularly under high current densities where surface electron transfer is no longer the limiting factor. The overpotential for OER is reduced by at least 70 mV at 150 mA cm-2 due to the enhanced conductivity from spin-polarized electrons facilitated by spin channels, with an expectation of even more significant reductions at higher current densities. This work provides a clearer picture of the role of spin in oxygen-involved electrocatalysis, providing critical insights for the design of more efficient catalytic systems in practical applications.

4.
Small ; 19(25): e2208074, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932896

RESUMO

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

5.
J Synchrotron Radiat ; 30(Pt 1): 147-168, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601934

RESUMO

The most accurate measurements of the mass attenuation coefficient for metals at low temperature for the zinc K-edge from 9.5 keV to 11.5 keV at temperatures of 10 K, 50 K, 100 K and 150 K using the hybrid technique are reported. This is the first time transition metal X-ray absorption fine structure (XAFS) has been studied using the hybrid technique and at low temperatures. This is also the first hybrid-like experiment at the Australian Synchrotron. The measured transmission and fluorescence XAFS spectra are compared and benchmarked against each other with detailed systematic analyses. A recent method for modelling self-absorption in fluorescence has been adapted and applied to a solid sample. The XAFS spectra are analysed using eFEFFIT to provide a robust measurement of the evolution of nanostructure, including such properties as net thermal expansion and mean-square relative displacement. This work investigates crystal dynamics, nanostructural evolution and the results of using the Debye and Einstein models to determine atomic positions. Accuracies achieved, when compared with the literature, exceed those achieved by both relative and differential XAFS, and represent a state-of-the-art for future structural investigations. Bond length uncertainties are of the order of 20-40 fm.

6.
Inorg Chem ; 62(24): 9379-9390, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37279492

RESUMO

Iron sulfides are key materials in metalloprotein catalysis. One interesting aspect of iron sulfides in biology is the incorporation of secondary metals, for example, Mo, in nitrogenase. These secondary metals may provide vital clues as to how these enzymes first emerged in nature. In this work, we examined the materials resulting from the coprecipitation of molybdenum with iron sulfides using X-ray absorption spectroscopy (XAS). The materials were tested as catalysts, and direct reductants using nitrite (NO2-) and protons (H+) as test substrates. It was found that Mo will coprecipitate with iron as sulfides, however, in distinct ways depending on the stoichiometric ratios of Mo, Fe, and HS-. It was observed that the selectivity of reduction products depends on the amount of molybdenum, with the presence of approximately at 10% Mo optimizing ammonium/ammonia (NH4+/NH3) production from NO2- and minimizing competitive hydrogen (H2) formation from protons (H+) with a secondary reductant.

7.
Phys Chem Chem Phys ; 25(32): 21436-21447, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37538035

RESUMO

Batteries play an increasingly critical role in the functioning of contemporary society. To ensure future proofing of battery technology, new materials and methods that overcome the current shortcomings need to be developed. Here we report the use of the inexpensive and off the shelf metal-carboxylate, copper tartrate, as a high-capacity anode material for lithium-ion batteries, providing a specific capacity of 744 mA h g-1 when cycled at 50 mA g-1. Additionally, an unusual capacity gain with cycling is investigated using advanced techniques including X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and small and ultra-small angle neutron scattering (SANS and USANS), providing insight into the structure-performance relationship of the electrode. Subsequently, a novel method of in situ generation of the active material is demonstrated using the reaction between the parent acid, tartaric acid, and the copper current collector during electrode formulation. This serves to increase and stabilise the electrode performance, as well as to make use of a cheaper feedstock (tartaric acid), and reduce some of the "dead mass" of the copper current collector.

8.
Angew Chem Int Ed Engl ; 62(5): e202213806, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36456529

RESUMO

The application of Li-rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt-free Li1.2 Ni0.2 Mn0.6 O2 and demonstrates the positive impact of two-phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2 Ni0.2 Mn0.6 O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post-mortem synchrotron analyses. The two-phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2- ) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity-retention rate during long-term cycling. The understanding of the structure-function relationship of Li1.2 Ni0.2 Mn0.6 O2 sheds light on the selective doping strategy and rational materials design for better-performance Li-rich layered oxides.

9.
Angew Chem Int Ed Engl ; 61(51): e202213863, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36289045

RESUMO

Efficient catalyst design is important for lean-electrolyte sulfur reduction in Li-S batteries. However, most of the reported catalysts were focused on catalyst-polysulfide interactions, and generally exhibit high activity only with a large excess of electrolyte. Herein, we proposed a general rule to boost lean-electrolyte sulfur reduction by controlling the catalyst-solvent interactions. As evidenced by synchrotron-based analysis, in situ spectroscopy and theoretical computations, strong catalyst-solvent interaction greatly enhances the lean-electrolyte catalytic activity and battery stability. Benefitting from the strong interaction between solvent and cobalt catalyst, the Li-S battery achieves stable cycling with only 0.22 % capacity decay per cycle with a low electrolyte/sulfur mass ratio of 4.2. The lean-electrolyte battery delivers 79 % capacity retention compared with the battery with flooded electrolyte, which is the highest among the reported lean-electrolyte Li-S batteries.

10.
Angew Chem Int Ed Engl ; 61(51): e202213296, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36280592

RESUMO

Not only high efficiency but also high selectivity of the electrocatalysts is crucial for high-performance, low-cost, and sustainable energy storage applications. Herein, we systematically investigate the edge effect of carbon-supported single-atom catalysts (SACs) on oxygen reduction reaction (ORR) pathways (two-electron (2 e- ) or four-electron (4 e- )) and conclude that the 2 e- -ORR proceeding over the edge-hosted atomic Co-N4 sites is more favorable than the basal-plane-hosted ones. As such, we have successfully synthesized and tuned Co-SACs with different edge-to-bulk ratios. The as-prepared edge-rich Co-N/HPC catalyst exhibits excellent 2 e- -ORR performance with a remarkable selectivity of ≈95 % in a wide potential range. Furthermore, we also find that oxygen functional groups could saturate the graphitic carbon edges under the ORR operation and further promote electrocatalytic performance. These findings on the structure-property relationship in SACs offer a promising direction for large-scale and low-cost electrochemical H2 O2 production via the 2 e- -ORR.

11.
Angew Chem Int Ed Engl ; 61(27): e202201969, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467801

RESUMO

Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium-ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d-2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s-2p orbital hybridization into the structure using LiNi0.5 Mn1.5 O4 oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital-level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital-focused engineering a new avenue for the fundamental modification of battery materials.

12.
Small ; 17(16): e2004579, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33464724

RESUMO

The development of novel single atom catalyst (SAC) is highly desirable in organic synthesis to achieve the maximized atomic efficiency. Here, a Co-based SAC on nitrogen-doped graphene (SACo@NG) with high Co content of 4.1 wt% is reported. Various characterization results suggest that the monodispersed Co atoms are coordinated with N atoms to form robust and highly effective catalytic centers to activate peroxymonosulfate (PMS) for organic selective oxidation. The catalytic performance of the SACo@NG/PMS system is conducted on the selective oxidation of benzyl alcohol (BzOH) showing high efficiency with over 90% conversion and benzaldehyde selectivity within 180 min under mild conditions. Both radical and non-radical processes occurred in the selective oxidation of BzOH, but the non-radical oxidation plays the dominant role which is accomplished by the adsorption of BzOH/PMS on the surface of SACo@NG and the subsequent electron transfer through the carbon matrix. This work provides new insights to the preparation of efficient transition metal-based single atom catalysts and their potential applications in PMS mediated selective oxidation of alcohols.

13.
J Synchrotron Radiat ; 28(Pt 5): 1476-1491, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475295

RESUMO

The first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron, Australia, is presented. In this experiment X-ray mass attenuation coefficients are measured across an energy range including the zinc K-absorption edge and X-ray absorption fine structure (XAFS). These high-accuracy measurements are recorded at 496 energies from 8.51 keV to 11.59 keV. The XERT protocol dictates that systematic errors due to dark current nonlinearities, correction for blank measurements, full-foil mapping to characterize the absolute value of attenuation, scattering, harmonics and roughness are measured over an extended range of experimental parameter space. This results in data for better analysis, culminating in measurement of mass attenuation coefficients across the zinc K-edge to 0.023-0.036% accuracy. Dark current corrections are energy- and structure-dependent and the magnitude of correction reached 57% for thicker samples but was still large and significant for thin samples. Blank measurements scaled thin foil attenuation coefficients by 60-500%; and up to 90% even for thicker foils. Full-foil mapping and characterization corrected discrepancies between foils of up to 20%, rendering the possibility of absolute measurements of attenuation. Fluorescence scattering was also a major correction. Harmonics, roughness and bandwidth were explored. The energy was calibrated using standard reference foils. These results represent the most extensive and accurate measurements of zinc which enable investigations of discrepancies between current theory and experiments. This work was almost fully automated from this first experiment at the Australian Synchrotron, greatly increasing the possibility for large-scale studies using XERT.

14.
J Synchrotron Radiat ; 28(Pt 5): 1492-1503, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475296

RESUMO

High-accuracy X-ray mass attenuation coefficients were measured from the first X-ray Extended Range Technique (XERT)-like experiment at the Australian Synchrotron. Experimentally measured mass attenuation coefficients deviate by ∼50% from the theoretical values near the zinc absorption edge, suggesting that improvements in theoretical tabulations of mass attenuation coefficients are required to bring them into better agreement with experiment. Using these values the imaginary component of the atomic form factor of zinc was determined for all the measured photon energies. The zinc K-edge jump ratio and jump factor are determined and results raise significant questions regarding the definitions of quantities used and best practice for background subtraction prior to X-ray absorption fine-structure (XAFS) analysis. The XAFS analysis shows excellent agreement between the measured and tabulated values and yields bond lengths and nanostructure of zinc with uncertainties of from 0.1% to 0.3% or 0.003 Što 0.008 Å. Significant variation from the reported crystal structure was observed, suggesting local dynamic motion of the standard crystal lattice. XAFS is sensitive to dynamic correlated motion and in principle is capable of observing local dynamic motion beyond the reach of conventional crystallography. These results for the zinc absorption coefficient, XAFS and structure are the most accurate structural refinements of zinc at room temperature.

15.
Nano Lett ; 20(2): 1009-1017, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31960678

RESUMO

Core/shell nanocrystals with a graded interface between core and shell exhibit improved optoelectronic properties compared with particles with an abrupt, sharp interface. Material gradients mitigate interfacial defects and define the shape of the confinement potential. So far, few works exist that allow to quantify the width of the gradient. In this study, ZnSe/CdS nanocrystals with graded shells made at different temperatures are characterized using extended X-ray absorption fine structure (EXAFS) and Raman spectroscopies. The average coordination number of the probed element with respect to the two possible counterions is fit to a simple, geometric model. It is shown that at the lower temperature limit for shell growth (260 °C), substantial interfacial alloying can be attributed mainly to cation migration. At higher temperature (290 °C), strain minimization leads to atomic ordering of the metal ions and an anomalously low degree of phase mixing.

16.
Nano Lett ; 20(2): 1252-1261, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31887051

RESUMO

Lithium-sulfur (Li-S) batteries are promising next-generation energy storage technologies due to their high theoretical energy density, environmental friendliness, and low cost. However, low conductivity of sulfur species, dissolution of polysulfides, poor conversion from sulfur reduction, and lithium sulfide (Li2S) oxidation reactions during discharge-charge processes hinder their practical applications. Herein, under the guidance of density functional theory calculations, we have successfully synthesized large-scale single atom vanadium catalysts seeded on graphene to achieve high sulfur content (80 wt % sulfur), fast kinetic (a capacity of 645 mAh g-1 at 3 C rate), and long-life Li-S batteries. Both forward (sulfur reduction) and reverse reactions (Li2S oxidation) are significantly improved by the single atom catalysts. This finding is confirmed by experimental results and consistent with theoretical calculations. The ability of single metal atoms to effectively trap the dissolved lithium polysulfides (LiPSs) and catalytically convert the LiPSs/Li2S during cycling significantly improved sulfur utilization, rate capability, and cycling life. Our work demonstrates an efficient design pathway for single atom catalysts and provides solutions for the development of high energy/power density Li-S batteries.

17.
Angew Chem Int Ed Engl ; 60(47): 25114-25121, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34553459

RESUMO

Aqueous Zn-ion batteries (ZIBs) are regarded as alternatives to Li-ion batteries benefiting from both improved safety and environmental impact. The widespread application of ZIBs, however, is compromised by the lack of high-performance cathodes. Currently, only the intercalation mechanism is widely reported in aqueous ZIBs, which significantly limits cathode options. Beyond Zn-ion intercalation, we comprehensively study the conversion mechanism for Zn2+ storage and its diffusion pathway in a CuI cathode, indicating that CuI occurs a direct conversion reaction without Zn2+ intercalation due to the high energy barrier for Zn2+ intercalation and migration. Importantly, this direct conversion reaction mechanism can be readily generalized to other high-capacity cathodes, such as Cu2 S (336.7 mA h g-1 ) and Cu2 O (374.5 mA h g-1 ), indicating its practical universality. Our work enriches the Zn-ion storage mechanism and significantly broadens the cathode horizons towards next-generation ZIBs.

18.
Angew Chem Int Ed Engl ; 59(26): 10594-10602, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32207203

RESUMO

Spinel LiNi0.5 Mn1.5 O4 (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd 3 ‾ m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb2 O7 counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices.

19.
Inorg Chem ; 58(8): 4880-4893, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932487

RESUMO

Rhodium(III) anticancer drugs can exert preferential antimetastatic or cytotoxic activities, which are dependent on subtle structural changes. In order to delineate factors affecting the biotransformations and speciation, mer,cis-[RhCl3( S-dmso)2( O-dmso)] (A1) and mer,cis-[RhCl3( S-dmso)2(2N-indazole)] (A2) have been studied by X-ray absorption spectroscopy (XAS). Interactions of these complexes with saline buffer, cell culture media, serum proteins (albumin and apo-transferrin), native and chemically degraded collagen gels, and A549 cells have been studied using linear combination fitting (LCF) and 3D scatter plots of XAS data. Following initial aquation and hydrolysis reactions involving stepwise displacement of Cl- and S-/ O-dmso ligands, the Rh(III) complexes underwent further ligand substitution reactions with biological nucleophiles (e.g., amino acid residues of serum proteins). The reaction of A1 with chemically degraded collagen gel was postulated to be a key reason for its antimetastatic activity. Analyses of the XAS of Rh-treated bulk cells were consistent with structure-reactivity relationships in which the more reactive A1 was predominantly antimetastatic and the less reactive A2 was predominantly cytotoxic, showing relationships parallel to typical Ru(III) anticancer agents, i.e., NAMI-A ([ImH] trans-[RuCl4( S-dmso)( N-imidazole)2], ImH = imidazolium cation) and KP1019/NKP1339 (KP1019, [IndH] trans-[RuCl4(N-indazole)2], IndH = indazolium cation; NKP1339, sodium trans-[RuCl4(2N-indazole)2]), respectively.


Assuntos
Antineoplásicos/farmacologia , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Metástase Neoplásica/prevenção & controle , Ródio/química , Ródio/farmacologia , Espectroscopia por Absorção de Raios X/métodos , Células A549 , Proteínas Sanguíneas/química , Meios de Cultura , Meios de Cultura Livres de Soro , Humanos , Relação Estrutura-Atividade
20.
J Synchrotron Radiat ; 23(Pt 3): 743-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140154

RESUMO

The design and operation of a low-volume spectroelectrochemical cell for X-ray absorption spectroscopy (XAS) of solutions at room temperature is described. Fluorescence XAS measurements are obtained from samples contained in the void space of a 50 µL reticulated vitreous carbon (sponge) working electrode. Both rapid electrosynthesis and control of the effects of photoreduction are achieved by control over the flow properties of the solution through the working electrode, where a good balance between the rate of consumption of sample and the minimization of decomposition was obtained by pulsing the flow of the solution by 1-2 µL with duty cycle of ∼3 s while maintaining a small net flow rate (26-100 µL h(-1)). The performance of the cell in terms of control of the redox state of the sample and minimization of the effects of photoreduction was demonstrated by XAS measurements of aqueous solutions of the photosensitive Fe(III) species, [Fe(C2O4)3](3-), together with that of the electrogenerated [Fe(C2O4)3](4-) product. The current response from the cell during the collection of XAS spectra provides an independent measure of the stability of the sample of the measurement. The suitability of the approach for the study of small volumes of mM concentrations of protein samples was demonstrated by the measurement of the oxidized and electrochemically reduced forms of cytochrome c.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa