Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 72(2): 239-249.e5, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30146316

RESUMO

Chromatin organization is disrupted genome-wide during DNA replication. On newly synthesized DNA, nucleosomes are assembled from new naive histones and old modified histones. It remains unknown whether the landscape of histone post-translational modifications (PTMs) is faithfully copied during DNA replication or the epigenome is perturbed. Here we develop chromatin occupancy after replication (ChOR-seq) to determine histone PTM occupancy immediately after DNA replication and across the cell cycle. We show that H3K4me3, H3K36me3, H3K79me3, and H3K27me3 positional information is reproduced with high accuracy on newly synthesized DNA through histone recycling. Quantitative ChOR-seq reveals that de novo methylation to restore H3K4me3 and H3K27me3 levels occurs across the cell cycle with mark- and locus-specific kinetics. Collectively, this demonstrates that accurate parental histone recycling preserves positional information and allows PTM transmission to daughter cells while modification of new histones gives rise to complex epigenome fluctuations across the cell cycle that could underlie cell-to-cell heterogeneity.


Assuntos
Replicação do DNA/genética , Histonas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/genética , Epigênese Genética/genética , Feminino , Células HeLa , Humanos , Metilação , Nucleossomos/genética , Processamento de Proteína Pós-Traducional/genética
2.
Genes Dev ; 30(11): 1278-88, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27257215

RESUMO

Acute myeloid leukemias (AMLs) with a rearrangement of the mixed-linage leukemia (MLL) gene are aggressive hematopoietic malignancies. Here, we explored the feasibility of using the H3K9- and H3K36-specific demethylases Jmjd2/Kdm4 as putative drug targets in MLL-AF9 translocated leukemia. Using Jmjd2a, Jmjd2b, and Jmjd2c conditional triple-knockout mice, we show that Jmjd2/Kdm4 activities are required for MLL-AF9 translocated AML in vivo and in vitro. We demonstrate that expression of the interleukin 3 receptor α (Il3ra also known as Cd123) subunit is dependent on Jmjd2/Kdm4 through a mechanism involving removal of H3K9me3 from the promoter of the Il3ra gene. Importantly, ectopic expression of Il3ra in Jmjd2/Kdm4 knockout cells alleviates the requirement of Jmjd2/Kdm4 for the survival of AML cells, showing that Il3ra is a critical downstream target of Jmjd2/Kdm4 in leukemia. These results suggest that the JMJD2/KDM4 proteins are promising drug targets for the treatment of AML.


Assuntos
Regulação Neoplásica da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-3/genética , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Metilação , Camundongos , Camundongos Knockout , Ligação Proteica , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
3.
Mol Cell ; 55(3): 347-60, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24999238

RESUMO

Polycomb group (PcG) proteins are required for normal differentiation and development and are frequently deregulated in cancer. PcG proteins are involved in gene silencing; however, their role in initiation and maintenance of transcriptional repression is not well defined. Here, we show that knockout of the Polycomb repressive complex 2 (PRC2) does not lead to significant gene expression changes in mouse embryonic stem cells (mESCs) and that it is dispensable for initiating silencing of target genes during differentiation. Transcriptional inhibition in mESCs is sufficient to induce genome-wide ectopic PRC2 recruitment to endogenous PcG target genes found in other tissues. PRC2 binding analysis shows that it is restricted to nucleosome-free CpG islands (CGIs) of untranscribed genes. Our results show that it is the transcriptional state that governs PRC2 binding, and we propose that it binds by default to nontranscribed CGI genes to maintain their silenced state and to protect cell identity.


Assuntos
Ilhas de CpG , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Nucleossomos/genética , Nucleossomos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Diclororribofuranosilbenzimidazol/farmacologia , Diterpenos/farmacologia , Epigênese Genética , Compostos de Epóxi/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Inativação de Genes , Inativação Gênica/efeitos dos fármacos , Genoma , Camundongos , Fenantrenos/farmacologia , Ligação Proteica/genética , Ligação Proteica/fisiologia
4.
Mol Cell ; 49(6): 1134-46, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23395003

RESUMO

Polycomb repressive complex 1 (PRC1) catalyzes lysine 119 monoubiquitylation on H2A (H2AK119ub1) and regulates pluripotency in embryonic stem cells (ESCs). However, the mechanisms controlling the binding of PRC1 to genomic sites and its catalytic activity are poorly understood. Here, we show that Fbxl10 interacts with Ring1B and Nspc1, forming a noncanonical PRC1 that is required for H2AK119ub1 in mouse ESCs. Genome-wide analyses reveal that Fbxl10 preferentially binds to CpG islands and colocalizes with Ring1B on Polycomb target genes. Notably, Fbxl10 depletion causes a decrease in Ring1B binding to target genes and a major loss of H2AK119ub1. Furthermore, genetic analyses demonstrate that Fbxl10 DNA binding capability and integration into PRC1 are required for H2AK119 ubiquitylation. ESCs lacking Fbxl10, like previously characterized Polycomb mutants, cannot differentiate properly. These results demonstrate that Fbxl10 has a key role in regulating Ring1B recruitment to its target genes and H2AK119 ubiquitylation in ESCs.


Assuntos
Ilhas de CpG , Proteínas F-Box/fisiologia , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/fisiologia , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Genoma , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Sítio de Iniciação de Transcrição , Transcrição Gênica
5.
EMBO J ; 35(14): 1550-64, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27266524

RESUMO

Chromatin-associated proteins are essential for the specification and maintenance of cell identity. They exert these functions through modulating and maintaining transcriptional patterns. To elucidate the functions of the Jmjd2 family of H3K9/H3K36 histone demethylases, we generated conditional Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1 single, double and triple knockout mouse embryonic stem cells (ESCs). We report that while individual Jmjd2 family members are dispensable for ESC maintenance and embryogenesis, combined deficiency for specifically Jmjd2a and Jmjd2c leads to early embryonic lethality and impaired ESC self-renewal, with spontaneous differentiation towards primitive endoderm under permissive culture conditions. We further show that Jmjd2a and Jmjd2c both localize to H3K4me3-positive promoters, where they have widespread and redundant roles in preventing accumulation of H3K9me3 and H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity.


Assuntos
Células-Tronco Embrionárias/fisiologia , Histona Desmetilases/metabolismo , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Regiões Promotoras Genéticas , Animais , Histona Desmetilases/genética , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos , Camundongos Knockout
6.
Blood ; 125(8): 1272-81, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25499759

RESUMO

The PR-domain (PRDM) family of genes encodes transcriptional regulators, several of which are deregulated in cancer. By using a functional screening approach, we sought to identify novel tumor suppressors among the PRDMs. Here we demonstrate oncogenic collaboration between depletion of the previously uncharacterized PR-domain family member Prdm11 and overexpression of MYC. Overexpression of PRDM11 inhibits proliferation and induces apoptosis. Prdm11 knockout mice are viable, and loss of Prdm11 accelerates MYC-driven lymphomagenesis in the Eµ-Myc mouse model. Moreover, we show that patients with PRDM11-deficient diffuse large B-cell lymphomas (DLBCLs) have poorer overall survival and belong to the nongerminal center B-cell-like subtype. Mechanistically, genome-wide mapping of PRDM11 binding sites coupled with transcriptome sequencing in human DLBCL cells evidenced that PRDM11 associates with transcriptional start sites of target genes and regulates important oncogenes such as FOS and JUN. Hence, we characterize PRDM11 as a putative novel tumor suppressor that controls the expression of key oncogenes, and we add new mechanistic insight into B-cell lymphomagenesis.


Assuntos
Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , Linfoma/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Linfoma/patologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética
7.
J Crohns Colitis ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747639

RESUMO

BACKGROUND AND AIMS: Epidemiological studies have shown that subnormal levels of vitamin D (25(OH)D) are associated with a more aggravated clinical course of ulcerative colitis (UC). Despite an increased focus on the therapeutic importance of vitamin D and vitamin D receptor (VDR) signaling, the mechanisms underlying the effects of the vitamin D-VDR axis on UC remain elusive. Therefore, we aimed to investigate whether exposure to active vitamin D (1,25(OH)2D3)/VDR signaling in human organoids could influence the maintenance of the colonic epithelium. METHODS: Intestinal VDR expression was studied by immunohistochemistry, RNA expression arrays, and single-cell RNA sequencing of colonic biopsy specimens obtained from patients with UC and healthy individuals. To characterize the functional and transcriptional effects of 1,25(OH)2D3, we used patient-derived colonic organoids. The dependency of VDR was assessed by knocking out the receptor with CRISPR/Cas9. RESULTS: Our results suggest that 1,25(OH)2D3/VDR stimulation supports differentiation of the colonic epithelium and that impaired 1,25(OH)2D3/VDR signaling thereby may compromise the structure of the intestinal epithelial barrier, leading to flares of UC. Furthermore, a transcriptional response to VDR activity was observed primarily in fully differentiated cells at the top of the colonic crypt, and this response was reduced during flares of UC. CONCLUSIONS: We identified an important role of vitamin D signaling in supporting differentiated cell states in the human colonic epithelium, and thereby maintenance of the intestinal barrier integrity. This makes the vitamin D-VDR signaling axis an interesting target for therapeutic efforts to achieve and maintain remission in patients with UC.

8.
EMBO Rep ; 12(7): 705-12, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21637299

RESUMO

To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main regulators of G2 checkpoint maintenance following DNA-damage.


Assuntos
Proteína BRCA2/metabolismo , Fase G2/fisiologia , Ensaios de Triagem em Larga Escala , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína BRCA2/genética , Linhagem Celular , Dano ao DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi , Fase G2/genética , Biblioteca Gênica , Células HCT116 , Células HeLa , Humanos , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
9.
Sci Adv ; 9(28): eadg4055, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436979

RESUMO

Generation of functionally mature organs requires exquisite control of transcriptional programs governing cell state transitions during development. Despite advances in understanding the behavior of adult intestinal stem cells and their progeny, the transcriptional regulators that control the emergence of the mature intestinal phenotype remain largely unknown. Using mouse fetal and adult small intestinal organoids, we uncover transcriptional differences between the fetal and adult state and identify rare adult-like cells present in fetal organoids. This suggests that fetal organoids have an inherent potential to mature, which is locked by a regulatory program. By implementing a CRISPR-Cas9 screen targeting transcriptional regulators expressed in fetal organoids, we establish Smarca4 and Smarcc1 as important factors safeguarding the immature progenitor state. Our approach demonstrates the utility of organoid models in the identification of factors regulating cell fate and state transitions during tissue maturation and reveals that SMARCA4 and SMARCC1 prevent precocious differentiation during intestinal development.


Assuntos
Células-Tronco Adultas , Sistemas CRISPR-Cas , Animais , Camundongos , Diferenciação Celular/genética , Feto , Organoides
11.
Cell Mol Gastroenterol Hepatol ; 12(4): 1281-1296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118489

RESUMO

BACKGROUND AND AIMS: The trigger hypothesis opens the possibility of anti-flare initiation therapies by stating that ulcerative colitis (UC) flares originate from inadequate responses to acute mucosal injuries. However, experimental evidence is restricted by a limited use of suitable human models. We thus aimed to investigate the acute mucosal barrier injury responses in humans with and without UC using an experimental injury model. METHODS: A standardized mucosal break was inflicted in the sigmoid colon of 19 patients with UC in endoscopic and histological remission and 20 control subjects. Postinjury responses were assessed repeatedly by high-resolution imaging and sampling to perform Geboes scoring, RNA sequencing, and injury niche microbiota 16S ribosomal RNA gene sequencing. RESULTS: UC patients had more severe endoscopic postinjury inflammation than did control subjects (P < .01), an elevated modified Geboes score (P < .05), a rapid induction of innate response gene sets (P < .05) and antimicrobial peptides (P < .01), and engagement of neutrophils (P < .01). Innate lymphoid cell type 3 (ILC3) markers were increased preinjury (P < .01), and ILC3 activating cytokines were highly induced postinjury, resulting in an increase in ILC3-type cytokine interleukin-17A. Across groups, the postinjury mucosal microbiome had higher bacterial load (P < .0001) and lower α-diversity (P < .05). CONCLUSIONS: UC patients in remission respond to mucosal breaks by an innate hyperresponse engaging resident regulatory ILC3s and a subsequent adaptive activation. The postinjury inflammatory bowel disease-like microbiota diversity decrease is irrespective of diagnosis, suggesting that the dysbiosis is secondary to host injury responses. We provide a model for the study of flare initiation in the search for antitrigger-directed therapies.


Assuntos
Colite Ulcerativa/etiologia , Colite Ulcerativa/patologia , Microbioma Gastrointestinal , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico por imagem , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Disbiose , Endoscopia , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade
12.
Eur Neuropsychopharmacol ; 42: 1-11, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288378

RESUMO

Psilocybin has in some studies shown promise as treatment of major depressive disorder and psilocybin therapy was in 2019 twice designated as breakthrough therapy by the U.S. Food and Drug Administration (FDA). A very particular feature is that ingestion of just a single dose of psilocybin is associated with lasting changes in personality and mood. The underlying molecular mechanism behind its effect is, however, unknown. In a translational pig model, we here present the effects of a single dose of psilocybin on pig behaviour, receptor occupancy and gene expression in the brain. An acute i.v. injection of 0.08 mg/kg psilocybin to awake female pigs induced characteristic behavioural changes in terms of headshakes, scratching and rubbing, lasting around 20 min. A similar dose was associated with a cerebral 5-HT2A receptor occupancy of 67%, as determined by positron emission tomography, and plasma psilocin levels were comparable to what in humans is associated with an intense psychedelic experience. We found that 19 genes were differentially expressed in prefrontal cortex one day after psilocybin injection, and 3 genes after 1 week. Gene Set Enrichment Analysis demonstrated that multiple immunological pathways were regulated 1 week after psilocybin exposure. This provides a framework for future investigations of the lasting molecular mechanisms induced by a single dose of psilocybin. In the light of an ongoing debate as to whether psilocybin is a safe treatment for depression and other mental illnesses, it is reassuring that our data suggest that any effects on gene expression are very modest.


Assuntos
Transtorno Depressivo Maior , Alucinógenos , Animais , Encéfalo/diagnóstico por imagem , Feminino , Expressão Gênica , Alucinógenos/farmacologia , Psilocibina/farmacologia , Receptor 5-HT2A de Serotonina/genética , Suínos
13.
Nat Cell Biol ; 22(4): 380-388, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231309

RESUMO

The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Processamento de Proteína Pós-Traducional , Zigoto/metabolismo , Animais , Implantação do Embrião , Embrião de Mamíferos , Feminino , Fertilização/genética , Heterocromatina/química , Heterocromatina/metabolismo , Histona Desmetilases/genética , Histonas/genética , Masculino , Metáfase , Metilação , Camundongos , Camundongos Knockout , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Transcrição Gênica , Zigoto/citologia , Zigoto/crescimento & desenvolvimento
14.
Nat Commun ; 9(1): 3704, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209253

RESUMO

The decompaction and re-establishment of chromatin organization immediately after mitosis is essential for genome regulation. Mechanisms underlying chromatin structure control in daughter cells are not fully understood. Here we show that a chromatin compaction threshold in cells exiting mitosis ensures genome integrity by limiting replication licensing in G1 phase. Upon mitotic exit, chromatin relaxation is controlled by SET8-dependent methylation of histone H4 on lysine 20. In the absence of either SET8 or H4K20 residue, substantial genome-wide chromatin decompaction occurs allowing excessive loading of the origin recognition complex (ORC) in the daughter cells. ORC overloading stimulates aberrant recruitment of the MCM2-7 complex that promotes single-stranded DNA formation and DNA damage. Restoring chromatin compaction restrains excess replication licensing and loss of genome integrity. Our findings identify a cell cycle-specific mechanism whereby fine-tuned chromatin relaxation suppresses excessive detrimental replication licensing and maintains genome integrity at the cellular transition from mitosis to G1 phase.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Histonas/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Replicação do DNA/genética , Citometria de Fluxo , Histonas/genética , Humanos , Microscopia de Fluorescência , RNA Interferente Pequeno/genética
15.
Nat Med ; 23(4): 483-492, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263309

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressive complex 2 (PRC2), a multiprotein complex responsible for the methylation of H3 at lysine 27 (H3K27me), by binding to its catalytic subunit EZH2. Although DIPGs with the H3K27M mutation show global loss of H3K27me3, several genes retain H3K27me3. Here we describe a mouse model of DIPG in which H3K27M potentiates tumorigenesis. Using this model and primary patient-derived DIPG cell lines, we show that H3K27M-expressing tumors require PRC2 for proliferation. Furthermore, we demonstrate that small-molecule EZH2 inhibitors abolish tumor cell growth through a mechanism that is dependent on the induction of the tumor-suppressor protein p16INK4A. Genome-wide enrichment analyses show that the genes that retain H3K27me3 in H3K27M cells are strong polycomb targets. Furthermore, we find a highly significant overlap between genes that retain H3K27me3 in the DIPG mouse model and in human primary DIPGs expressing H3K27M. Taken together, these results show that residual PRC2 activity is required for the proliferation of H3K27M-expressing DIPGs, and that inhibition of EZH2 is a potential therapeutic strategy for the treatment of these tumors.


Assuntos
Neoplasias do Tronco Encefálico/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Glioma/genética , Histonas/genética , Animais , Benzamidas/farmacologia , Compostos de Bifenilo , Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromatografia Líquida , Inibidor p16 de Quinase Dependente de Ciclina/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Técnicas de Inativação de Genes , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Indazóis/farmacologia , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Morfolinas , Mutação , Transplante de Neoplasias , Células-Tronco Neurais , Complexo Repressor Polycomb 2/genética , Piridonas/farmacologia , Espectrometria de Massas em Tandem , Proteína Supressora de Tumor p14ARF/efeitos dos fármacos , Proteína Supressora de Tumor p14ARF/genética
16.
Nat Struct Mol Biol ; 23(4): 349-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926434

RESUMO

To empower experimentalists with a means for fast and comprehensive chromatin immunoprecipitation sequencing (ChIP-seq) data analyses, we introduce an integrated computational environment, EaSeq. The software combines the exploratory power of genome browsers with an extensive set of interactive and user-friendly tools for genome-wide abstraction and visualization. It enables experimentalists to easily extract information and generate hypotheses from their own data and public genome-wide datasets. For demonstration purposes, we performed meta-analyses of public Polycomb ChIP-seq data and established a new screening approach to analyze more than 900 datasets from mouse embryonic stem cells for factors potentially associated with Polycomb recruitment. EaSeq, which is freely available and works on a standard personal computer, can substantially increase the throughput of many analysis workflows, facilitate transparency and reproducibility by automatically documenting and organizing analyses, and enable a broader group of scientists to gain insights from ChIP-seq data.


Assuntos
Imunoprecipitação da Cromatina/métodos , Software , Animais , Genoma , Camundongos , Proteínas do Grupo Polycomb/análise
17.
Methods Mol Biol ; 1315: 271-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103906

RESUMO

DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide information on the methylation status of individual alleles of genes. This information may be of importance in many situations. In particular, in cancer both alleles of tumour suppressor genes generally need to be inactivated for a phenotypic effect to be observed. Here, we present a simple and cost-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon.


Assuntos
Alelos , Metilação de DNA , Análise de Sequência de DNA/métodos , DNA/genética , DNA/isolamento & purificação , Metilação de DNA/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase , Sulfitos/farmacologia
18.
PLoS One ; 10(11): e0142806, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571505

RESUMO

Alterations in chromatin structure caused by deregulated epigenetic mechanisms collaborate with underlying genetic lesions to promote cancer. SMARCA4/BRG1, a core component of the SWI/SNF ATP-dependent chromatin-remodelling complex, has been implicated by its mutational spectrum as exerting a tumour-suppressor function in many solid tumours; recently however, it has been reported to sustain leukaemogenic transformation in MLL-rearranged leukaemia in mice. Here we further explore the role of SMARCA4 and the two SWI/SNF subunits SMARCD2/BAF60B and DPF2/BAF45D in leukaemia. We observed the selective requirement for these proteins for leukaemic cell expansion and self-renewal in-vitro as well as in leukaemia. Gene expression profiling in human cells of each of these three factors suggests that they have overlapping functions in leukaemia. The gene expression changes induced by loss of the three proteins demonstrate that they are required for the expression of haematopoietic stem cell associated genes but in contrast to previous results obtained in mouse cells, the three proteins are not required for the expression of c-MYC regulated genes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leucemia/patologia , Proteínas Musculares/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Rearranjo Gênico , Leucemia/genética , Camundongos , Células Mieloides/patologia , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica
19.
Nat Commun ; 6: 5800, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557911

RESUMO

Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein cyclin F with suppression of the B-Myb/cyclin A pathway to ensure a DNA damage-induced checkpoint response in G2.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Reparo do DNA/fisiologia , Transativadores/metabolismo , Linhagem Celular Tumoral , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitinação
20.
PLoS One ; 9(5): e96545, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24797517

RESUMO

The JmjC domain-containing protein JMJD3/KDM6B catalyses the demethylation of H3K27me3 and H3K27me2. JMJD3 appears to be highly regulated at the transcriptional level and is upregulated in response to diverse stimuli such as differentiation inducers and stress signals. Accordingly, JMJD3 has been linked to the regulation of different biological processes such as differentiation of embryonic stem cells, inflammatory responses in macrophages, and induction of cellular senescence via regulation of the INK4A-ARF locus. Here we show here that JMJD3 interacts with the tumour suppressor protein p53. We find that the interaction is dependent on the p53 tetramerization domain. Following DNA damage, JMJD3 is transcriptionally upregulated and by performing genome-wide mapping of JMJD3, we demonstrate that it binds genes involved in basic cellular processes, as well as genes regulating cell cycle, response to stress and apoptosis. Moreover, we find that JMJD3 binding sites show significant overlap with p53 bound promoters and enhancer elements. The binding of JMJD3 to p53 target sites is increased in response to DNA damage, and we demonstrate that the recruitment of JMJD3 to these sites is dependent on p53 expression. Therefore, we propose a model in which JMJD3 is recruited to p53 responsive elements via its interaction with p53 and speculate that JMJD3 could act as a fail-safe mechanism to remove low levels of H3K27me3 and H3K27me2 to allow for efficient acetylation of H3K27.


Assuntos
Elementos Facilitadores Genéticos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Mapeamento Cromossômico , Células HEK293 , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Proteína Supressora de Tumor p53/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa