RESUMO
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).
Assuntos
Mudança Climática/estatística & dados numéricos , Ecossistema , Animais , Organismos Aquáticos , Clima , Conjuntos de Dados como Assunto , Previsões , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura , Fatores de Tempo , Reino UnidoRESUMO
Copepods are among the most abundant marine metazoans and form a key link between marine primary producers, higher trophic levels, and carbon sequestration pathways. Climate change is projected to change surface ocean temperature by up to 4°C in the North Atlantic with many associated changes including slowing of the overturning circulation, areas of regional freshening, and increased salinity and reductions in nutrients available in the euphotic zone over the next century. These changes will lead to a restructuring of phytoplankton and zooplankton communities with cascading effects throughout the food web. Here we employ observations of copepods, projected changes in ocean climate, and species distribution models to show how climate change may affect the distribution of copepod species in the North Atlantic. On average species move northeast at a rate of 14.1 km decade-1 . Species turnover in copepod communities will range from 5% to 75% with the highest turnover rates concentrated in regions of pronounced temperature increase and decrease. The changes in species range vary according to copepod traits with the largest effects found to occur in the cooling, freshening area in the subpolar North Atlantic south of Greenland and in an area of significant warming along the Scotian shelf. Large diapausing copepods (>2.5 mm) which are higher in lipids and a crucial food source for whales, may have an advantage in the cooling waters due to their life-history strategy that facilitates their survival in the arctic environment. Carnivorous copepods show a basin wide increase in species richness and show significant habitat area increases when their distribution moves poleward while herbivores see significant habitat area losses. The trait-specific effects highlight the complex consequences of climate change for the marine food web.
Assuntos
Mudança Climática , Copépodes , Animais , Ecossistema , Groenlândia , Temperatura , ZooplânctonRESUMO
Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels. Here, we visualize regional-scale multi-decadal trends in six key plankton lifeforms as well as their correlative relationships with sea surface temperature (SST). For the first time, we collate trends across multiple disparate surveys, comparing the spatially and temporally extensive Continuous Plankton Recorder (CPR) survey (offshore) with multiple long-term fixed station-based time-series (inshore) from around the UK coastline. These analyses of plankton lifeforms showed profound long-term changes, which were coherent across large spatial scales. For example, 'diatom' and 'meroplankton' lifeforms showed strong alignment between surveys and coherent regional-scale trends, with the 1998-2017 decadal average abundance of meroplankton being 2.3 times that of 1958-1967 for CPR samples in the North Sea. This major, shelf-wide increase in meroplankton correlated with increasing SSTs, and contrasted with a general decrease in holoplankton (dominated by small copepods), indicating a changing balance of benthic and pelagic fauna. Likewise, inshore-offshore gradients in dinoflagellate trends, with contemporary increases inshore contrasting with multi-decadal decreases offshore (approx. 75% lower decadal mean abundance), urgently require the identification of causal mechanisms. Our lifeform approach allows the collation of many different data types and time-series across the NW European shelf, providing a crucial evidence base for informing ecosystem-based management, and the development of regional adaptation plans.
Assuntos
Ecossistema , Plâncton , Animais , Biodiversidade , Clima , Mar do NorteRESUMO
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
Assuntos
Diatomáceas , Cadeia Alimentar , Animais , Regiões Árticas , Biomassa , ZooplânctonRESUMO
To assess the spatiotemporal evolution of the heterotrophic dinoflagellate Noctiluca scintillans in the North Sea, the Helgoland Roads time series and Continuous Plankton Recorder survey were analysed using generalized additive models. Over the last decades, blooms of N. scintillans have occurred more frequently and intensively in many regions. This harmful algal bloom forming species can alter food webs, reduce ecosystem productivity, and lead to economic losses while causing lower aquacultural yields. After the 1990s, N. scintillans abundances have significantly increased by 1.65-fold and a significant prolongation of the bloom window was found (from 27.5 to 98 days in recent decades) off the island of Helgoland, Germany. Significant correlations were found between bloom initiation and nutrients, as well as light availability since these factors lead to increased prey availability. Highest abundances of N. scintillans were associated with water temperatures around 17 °C and wind speed below 6 ms-1 causing dense surface accumulations. Solar radiation of more than 200 Wm-2 was identified as a main driver for post-bloom conditions as it can deteriorate the cells and lead to the decline of N. scintillans abundances. In the southern North Sea, N. scintillans occurrences have intensified and spread since the 1980s with hotspots identified as the coastal waters adjacent to the estuaries of the Elbe and Rhine rivers.
Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Mar do Norte , Dinoflagellida/fisiologia , Alemanha , Análise Espaço-TemporalRESUMO
Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains ~22,000, ~157,000, ~9,000, ~400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.
Assuntos
Foraminíferos , Censos , Mudança Climática , Oceanos e Mares , PlânctonRESUMO
Almost nothing is known about the historical abundance of the ocean sunfish. Yet as an ecologically and functionally important taxa, understanding changes in abundance may be a useful indicator of how our seas are responding to anthropogenic changes including overfishing and climate change. Within this context, sightings from a coastal bird observatory (51.26 ∘ N, 9.30 ∘ W) over a 47 year period (from April to October 1971-2017) provided the first long-term index of sunfish abundance. Using a general linear mixed effect model with a hurdle to deal with imperfect detectability and to model trends, a higher probability of detecting sunfish was found in the 1990s and 2000s. Continuous Plankton Recorder (CPR) phytoplankton color indices and the annual mean position of the 13 ∘ C sea surface isotherm were significantly correlated with the probability of detecting sunfish. An increase in siphonophore abundance (as measured by the CPR) was also documented. However, this increase occurred 10-15 years after the sunfish increase and was not significantly correlated with sunfish abundance. Our results suggest that the observed increase in sunfish sightings is evidence of a range expansion because it was significantly correlated with the mean position of the 13 ∘ C isotherm which moved northwards by over 200 km. Furthermore, the observed increase in sunfish occured 10 years before sunfish sightings are documented in Icelandic and Norwegian waters, and was concurrent with well-known range expansions for other fish species during the 1990s. This study demonstrates how sustained citizen science projects can provide unique insights on the historical abundance of this enigmatic species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00227-021-04005-8.
RESUMO
Plastic production has increased exponentially since its use became widespread in the 1950s. This has led to increased concern as plastics have become prevalent in the oceanic environment, and evidence of their impacts on marine organisms and human health has been highlighted. Despite their prevalence, very few long-term (>40 years) records of the distribution and temporal trends of plastics in the world's oceans exist. Here we present a new time series, from 1957 to 2016 and covering over 6.5 million nautical miles, based on records of when plastics have become entangled on a towed marine sampler. This consistent time series provides some of the earliest records of plastic entanglement, and is the first to confirm a significant increase in open ocean plastics in recent decades.
RESUMO
N-Methanocarbathymidine [(N)-MCT], a thymidine analogue, exhibits potent activity in cell culture against herpes simplex virus1 (HSV-1). (N)-MCT showed higher antiviral activity than ganciclovir (GCV). Continuous treatment of Vero cells with (N)-MCT immediately or 10 h post-infection (p.i.) fully prevented the development of viral infection. However, when infected cells were treated with (N)-MCT at 12 h p.i., there was only a partial inhibition (ca. 50%). Additionally, continuous treatment of infected cells with (N)-MCT for about 48 h was sufficient to achieve full prevention of viral infection without further treatment. These findings suggest the complete loss of herpes simplex thymidine kinase (HSV-tk) activity occurs after 48 h of treatment with (N)-MCT. This study helps to understand the mechanism and dynamics of antiHSV activity of (N)-MCT, which is necessary for its future development as an antiviral drug.
Assuntos
Herpesvirus Humano 1/efeitos dos fármacos , Timidina/análogos & derivados , Animais , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Herpesvirus Humano 1/crescimento & desenvolvimento , Timidina/química , Timidina/farmacologia , Fatores de Tempo , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
N-Methanocarbathymidine [(N)-MCT], a thymidine analogue incorporating a pseudosugar with a fixed Northern conformation, exhibits antiherpetic activity against both herpes simplex virus (HSV) HSV-1 and HSV-2, with a potency greater than that of the reference standard, ganciclovir (GCV). In the present study, we have assessed the cytotoxic activity in vitro of (N)-MCT in wild-type murine colon cancer cells (MC38) and in cells expressing the herpes simplex thymidine kinase gene (MC38/HSV-tk), and the antitumor activity of (N)-MCT in vivo against HSV-tk transduced and nontransduced MC38 murine tumors. In vitro, when assessed over a 48-h period, the growth-inhibitory activity (IC50) of (N)-MCT toward MC38/HSV-tk cells was 2.9 microM. In parallel studies, the cytostatic activity of the reference compound GCV in these tumor lines was 3.0 microM. In studies in vivo, both (N)-MCT and GCV (100 mg/kg) given twice daily for 7 days completely inhibited the growth of HSV-tk-transduced MC38 tumors while exhibiting no effect on nontransduced MC38 tumors in mice. In nontransduced cells both in vitro and in vivo, only low levels of (N)-MCT and its monophosphate could be detected after administration of the parent drug, whereas in HSV-tk-transduced cells (N)-MCT was phosphorylated to its respective mono-, di-, and triphosphates. Furthermore, data showed that (N)-MCT incorporated in high levels into cellular DNA whereas trace levels were measured into RNA. These observations indicate that (N)-MCT may be a useful candidate prodrug for HSV-tk suicide gene therapy of cancer.
Assuntos
Antineoplásicos/farmacologia , Terapia Genética/métodos , Timidina Quinase/metabolismo , Timidina/farmacologia , Animais , Antivirais/farmacologia , Divisão Celular , Cromatografia Líquida de Alta Pressão , DNA/metabolismo , Relação Dose-Resposta a Droga , Herpes Simples/enzimologia , Hidrólise , Concentração Inibidora 50 , Camundongos , Modelos Químicos , Transplante de Neoplasias , Fosforilação , RNA/metabolismo , Timidina/análogos & derivados , Fatores de Tempo , Células Tumorais CultivadasRESUMO
N-methanocarbathymidine ((N)-MCT), a thymidine analog incorporating a pseudosugar with a fixed Northern conformation, exhibits potent antiherpetic activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). This study contrasts the metabolic pathway of (N)-MCT and the well-known antiherpetic agent ganciclovir (GCV) in HSV-1-infected and uninfected Vero cells. Treatment of HSV-1 infected Vero cells immediately after viral infection with (N)-MCT profoundly inhibited the development of HSV-1 infection. Using standard plaque reduction assay to measure viral infection, (N)-MCT showed a potency greater than that of ganciclovir (GCV), the IC50s were 0.02 and 0.25 microM for (N)-MCT and GCV, respectively. (N)-MCT showed no cytotoxic effect on uninfected Vero cells (CC50>100 microM). Dose and time dependence studies showed high levels of (N)-MCT-triphosphate ((N)-MCT-TP), and GCV-triphosphate (GCV-TP) in HSV-1-infected cells incubated with (N)-MCT or GCV, respectively. In contrast, uninfected cells incubated with (N)-MCT showed elevated levels of (N)-MCT-monophosphate only, while low levels of mono, di- and triphosphates of GCV were found following incubation with GCV. Although the accumulation rate of (N)-MCT and GCV phosphates in HSV-1-infected cells were similar, the decay rate of (N)-MCT-TP was slower than that of GCV-TP. These results suggest that: (1) the antiviral activity of (N)-MCT against herpes viruses is mediated through its triphosphate metabolite; (2) in contrast to GCV, the diphosphorylation of (N)-MCT in HSV-1- infected cells is the rate limiting step; (3) (N)-MCT-TP accumulates rapidly and has a long half-life in HSV-1-infected cells; and (4) HSV-tk catalyzed the mono, and diphosphorylation of (N)-MCT while monophosphorylating GCV only. These results provide a biochemical rational for the highly selective and effective inhibition of HSV-1 by (N)-MCT.
Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Timidina/farmacologia , Animais , Antivirais/metabolismo , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Herpesvirus Humano 1/fisiologia , Fosforilação , Polifosfatos/metabolismo , Timidina/análogos & derivados , Células VeroRESUMO
PURPOSE: The conformationally rigid nucleoside, N-methanocarbathymidine [(N)-MCT] exerts a potent antiproliferative effect both in vitro and in vivo against murine colon cancer cells (MC38) expressing the herpes simplex virus thymidine kinase gene (MC38/HSV-tk). Metabolic studies have revealed that high levels of (N)-MCT triphosphate accumulate in transduced cells and are incorporated into DNA, resulting in cell death. The objective of the present study was to assess the pharmacokinetic profile of (N)-MCT in C57BL/6 mice bearing nontransduced MC38 and MC38/HSV-tk tumors. METHODS: Male black C57BL/6 mice bearing subcutaneous tumors derived from wildtype and HSV-tk-transduced MC38 murine colon cancer cells in the left and right flank, respectively, were treated i.p. with radiolabeled (N)-MCT (100 mg/kg). Mice were killed at each of the predetermined times after drug administration. Blood, urine, tumors and various organs and tissues were obtained for measurement of drug levels. RESULTS: Plasma and tissue concentrations of (N)-MCT peaked at 0.25-0.5 h. The major pharmacokinetic parameters calculated for (N)-MCT in plasma were: T(1/2)beta 4.7 h, AUC 147 micro g.h/ml, CL 0.69 l/kg per h. The penetration of (N)-MCT into brain and testes was slow. Between 4 and 24 h after drug administration, the levels of (N)-MCT measured in HSV-tk-expressing tumors were significantly higher than in wildtype tumors. HPLC analysis of methanolic extracts of plasma and urine obtained at various times after drug administration revealed no (N)-MCT metabolites in the plasma, and the compound was secreted unchanged in the urine. CONCLUSIONS: After i.p. injection into mice, (N)-MCT was rapidly absorbed and distributed in all organs examined. No drug metabolites were detectable in plasma and the compound was secreted unchanged in urine. These results are essential for the future development and in postulating the most efficient use of (N)-MCT in the HSV-tk enzyme prodrug system for gene therapy approaches for the treatment of cancer.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos/farmacocinética , Pró-Fármacos/farmacocinética , Timidina Quinase/antagonistas & inibidores , Timidina/farmacocinética , Adenocarcinoma/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Cromatografia Líquida de Alta Pressão , Neoplasias do Colo/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/uso terapêutico , Terapia Genética , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/antagonistas & inibidores , Transplante de Neoplasias , Pró-Fármacos/uso terapêutico , Simplexvirus/enzimologia , Simplexvirus/genética , Timidina/análogos & derivados , Timidina/uso terapêutico , Distribuição Tecidual , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacosRESUMO
The temperate waters of the North-Eastern Atlantic have a long history of maritime resource richness and, as a result, the European Union is endeavouring to maintain regional productivity and biodiversity. At the intersection of these aims lies potential conflict, signalling the need for integrated, cross-border management approaches. This paper focuses on the marine megafauna of the region. This guild of consumers was formerly abundant, but is now depleted and protected under various national and international legislative structures. We present a meta-analysis of available megafauna datasets using presence-only distribution models to characterise suitable habitat and identify spatially-important regions within the English Channel and southern bight of the North Sea. The integration of studies from dedicated and opportunistic observer programmes in the United Kingdom and France provide a valuable perspective on the spatial and seasonal distribution of various taxonomic groups, including large pelagic fishes and sharks, marine mammals, seabirds and marine turtles. The Western English Channel emerged as a hotspot of biodiversity for megafauna, while species richness was low in the Eastern English Channel. Spatial conservation planning is complicated by the highly mobile nature of marine megafauna, however they are important components of the marine environment and understanding their distribution is a first crucial step toward their inclusion into marine ecosystem management.
Assuntos
Biologia Marinha/métodos , Animais , Biodiversidade , Aves , Conservação dos Recursos Naturais , Ecossistema , Peixes , Mamíferos , Modelos Teóricos , TartarugasRESUMO
Global climate change is driving rapid distribution shifts in marine ecosystems; these are well established for lower trophic levels, but are harder to quantify for migratory top predators. By analysing a 25-year sightings-based dataset, we found evidence for rapid northwards range expansion of the critically endangered Balearic shearwater Puffinus mauretanicus in northeast Atlantic waters. A 0.6 degrees C sea surface temperature increase in the mid-1990s is interpreted as an underlying controlling factor, while simultaneous northward shifts of plankton and prey fish species suggests a strong bottom-up control. Our results have important conservation implications and provide new evidence for climate-driven regime shift in Atlantic ecosystems.
Assuntos
Aves/fisiologia , Clima , Animais , Oceano Atlântico , Dinâmica Populacional , Comportamento Predatório , Fatores de TempoRESUMO
We report unprecedented numbers of juvenile snake pipefish, Entelurus aequoreus, in continuous plankton records of the Northeastern Atlantic since 2002. Increased sea surface temperatures (SSTs) in the Northern Hemisphere, linked to global warming, are a likely cause. Analysis of a long-term time-series of SST data in the Northeastern Atlantic shows a rise in winter, spring and summer sea temperatures (January-September), when the eggs of E. aqueoreus, which are brooded by the male, are developing and the larvae are growing in plankton. From what is known of the reproductive biology of closely related species, we suggest that the increased abundance of larval and juvenile E. aequoreus in the plankton as far west as the Mid-Atlantic Ridge may reflect the impact of temperature on abundance, through its effects on the operational sex ratio and potential reproductive rate, the onset of the breeding season and juvenile survival in this sex role reversed fish.