Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 167(4): 973-984.e12, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814523

RESUMO

In obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice. In vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and 3T3-L1 adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Importantly, we found that Gal3 can bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidate a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach to treat insulin resistance.


Assuntos
Galectina 3/sangue , Galectina 3/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Quimiotaxia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Insulina/sangue , Resistência à Insulina , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Células Musculares/metabolismo , Células Musculares/patologia , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia
2.
Cell ; 152(4): 673-84, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415219

RESUMO

Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Diabetes Mellitus Tipo 2/microbiologia , Trato Gastrointestinal/microbiologia , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Obesidade/metabolismo
3.
J Immunol ; 211(11): 1680-1692, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850965

RESUMO

Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. Although the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle immunization, the microbiome suppresses Ig and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA lipid nanoparticle vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for continued therapeutic development and deployment of these vaccines.


Assuntos
Microbiota , Vacinas de DNA , Camundongos , Animais , Vacinas Baseadas em Ácido Nucleico , Linfócitos T CD8-Positivos , DNA , RNA Mensageiro , Imunização Secundária
4.
J Immunol ; 203(12): 3427-3435, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712385

RESUMO

Obesity impacts over 30% of the United States population, resulting in a wide array of complications. Included among these is the deterioration of the intestinal barrier, which has been implicated in type 2 diabetes and susceptibility to bacterial transepithelial migration. The intestinal epithelium is maintained by αß and γδ intraepithelial T lymphocytes, which migrate along the epithelia, support epithelial homeostasis, and protect from infection. In this study, we investigate how obesity impacts intraepithelial lymphocyte (IEL) persistence and function in intestinal homeostasis and repair. Mice were fed a high-fat diet to induce obesity and to study immunomodulation in the intestine. There is a striking reduction in αß and γδ IEL persistence as obesity progresses with a different mechanism in αß versus γδ IEL populations. CD4+ and CD4+CD8+ αß intraepithelial T lymphocytes exhibit reduced homeostatic proliferation in obesity, whereas both αß and γδ IELs downregulate CD103 and CCR9. The reduction in intraepithelial T lymphocytes occurs within 7 wk of high-fat diet administration and is not dependent on chronic inflammation via TNF-α. Young mice administered a high-fat diet upon weaning exhibit the most dramatic phenotype, showing that childhood obesity has consequences on intestinal IEL seeding. Together, this dysfunction in the intestinal epithelium renders obese mice more susceptible to dextran sulfate sodium-induced colitis. Diet-induced weight loss restores IEL number and CD103/CCR9 expression and improves outcome in colitis. Together, these data confirm that obesity has immunomodulatory consequences in intestinal tissues that can be improved with weight loss.


Assuntos
Colite/etiologia , Colite/metabolismo , Imunomodulação , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Fatores Etários , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Dieta Hiperlipídica , Modelos Animais de Doenças , Imunofluorescência , Regulação da Expressão Gênica , Imuno-Histoquímica , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Masculino , Camundongos , Obesidade/complicações , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Baço/imunologia , Baço/metabolismo , Timo/imunologia , Timo/metabolismo
5.
J Immunol ; 201(1): 230-242, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29794015

RESUMO

There is cross-talk between the intestinal epithelium and the microbiota that functions to maintain a tightly regulated microenvironment and prevent chronic inflammation. This communication is partly mediated through the recognition of bacterial proteins by host-encoded innate receptors, such as TLRs. However, studies examining the role of TLR signaling on colonic homeostasis have given variable and conflicting results. Despite its critical role in mediating immunity during enteric infection of the small intestine, TLR1-mediated recognition of microbiota-derived ligands and their influence on colonic homeostasis has not been well studied. In this study, we demonstrate that defective TLR1 recognition of the microbiome by epithelial cells results in disruption of crypt homeostasis specifically within the secretory cell compartment, including a defect in the mucus layer, ectopic Paneth cells in the colon, and an increase in the number of rapidly dividing cells at the base of the crypt. As a consequence of the perturbed epithelial barrier, we found an increase in mucosal-associated and translocated commensal bacteria and chronic low-grade inflammation characterized by an increase in lineage-negative Sca1+Thy1hi innate lymphoid-like cells that exacerbate inflammation and worsen outcomes in a model of colonic injury and repair. Our findings demonstrate that sensing of the microbiota by TLR1 may provide key signals that regulate the colonic epithelium, thereby limiting inflammation through the prevention of bacterial attachment to the mucosa and exposure to the underlying immune system.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/prevenção & controle , Mucosa Intestinal/imunologia , Celulas de Paneth/patologia , Receptor 1 Toll-Like/imunologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Aderência Bacteriana/fisiologia , Colo/citologia , Colo/imunologia , Colo/patologia , Transplante de Microbiota Fecal , Inflamação/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia
6.
Bioessays ; 39(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752547

RESUMO

Galectin-3 and LTB4 are pro-inflammatory molecules recently shown to directly cause insulin resistance in mouse and human cells. They are highly expressed in the obese state, and can be targeted both genetically and pharmacologically to improve insulin sensitivity in vivo. This expands on previous research showing that targeting inflammatory cytokines can be insulin sensitizing in animal models. However, translating these potential therapies into the human setting remains challenging. Here we review this latest research, and discuss how balancing their pleiotropic functions, the action of the microbiome, and the ability to identify relevant patient populations are vital considerations for successful anti-inflammatory insulin sensitizing therapy.


Assuntos
Galectina 3/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Leucotrieno B4/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Obesidade/metabolismo
7.
bioRxiv ; 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36824851

RESUMO

Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific-pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. While the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle (LNP) immunization, the microbiome suppresses immunoglobulin and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA-LNP vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for their continued therapeutic development and deployment.

8.
iScience ; 26(12): 108504, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125026

RESUMO

Many promising vaccine candidates and licensed vaccines lead to variable immune responses within humans. Studies suggest that environmental exposures in the gastrointestinal tract could contribute to a reduction in vaccine efficacy via immune tolerance at this site; this is partly achieved by a high abundance of regulatory T cells (Tregs). It is unclear if Treg subsets regulate systemic vaccine responses following oral antigen pre-exposure. Here, we implemented a conditional knock-out mouse model of RORγt+ Tregs to examine the role of these cells in mediating this process. Following oral exposure to the model antigen ovalbumin (OVA) prior to immunization, we found similar induction of vaccine-induced antibody responses in mice lacking RORγt expression in Tregs compared to sufficient controls. Use of various adjuvants led to distinct findings. Our data suggest that expression of RORγt+ within Tregs is not required to regulate tolerance to systemic vaccination following oral antigen exposure.

9.
Diabetes ; 68(7): 1415-1426, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010956

RESUMO

The composition of the gastrointestinal microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine, are elevated in high-fat diet-induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon-like peptide 1. Obese Fpr1 knockout mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. Overall, we describe a new mechanism by which the gut microbiota can modulate glucose metabolism, providing a potential approach for the treatment of metabolic disease.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Microbiota/fisiologia , Obesidade/metabolismo , Oligopeptídeos/metabolismo , Animais , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Cromatografia Líquida , Dieta Hiperlipídica , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glucose/farmacologia , Intolerância à Glucose , Hibridização in Situ Fluorescente , Insulina/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/induzido quimicamente
10.
Cell Host Microbe ; 23(2): 154-156, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29447693

RESUMO

The initiating factors that trigger inflammatory bowel disease (IBD) are poorly understood. In a recent paper, Yang et al. (2017) demonstrate that IBD-like syndrome in mice can develop as a consequence of recurrent pathogen infection. Pathogenic triggering of inflammatory disease is a re-emerging concept that has significant therapeutic implications.


Assuntos
Cicatriz , Inflamação , Animais , Doenças Inflamatórias Intestinais , Intestinos , Camundongos
11.
Artigo em Inglês | MEDLINE | ID: mdl-27999564

RESUMO

Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.

12.
Diabetes ; 64(9): 3203-17, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26023106

RESUMO

The intestinal microbiome can regulate host energy homeostasis and the development of metabolic disease. Here we identify GPR43, a receptor for bacterially produced short-chain fatty acids (SCFAs), as a modulator of microbiota-host interaction. ß-Cell expression of GPR43 and serum levels of acetate, an endogenous SCFA, are increased with a high-fat diet (HFD). HFD-fed GPR43 knockout (KO) mice develop glucose intolerance due to a defect in insulin secretion. In vitro treatment of isolated murine islets, human islets, and Min6 cells with (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide (PA), a specific agonist of GPR43, increased intracellular inositol triphosphate and Ca(2+) levels, and potentiated insulin secretion in a GPR43-, Gαq-, and phospholipase C-dependent manner. In addition, KO mice fed an HFD displayed reduced ß-cell mass and expression of differentiation genes, and the treatment of Min6 cells with PA increased ß-cell proliferation and gene expression. Together these findings identify GPR43 as a potential target for therapeutic intervention.


Assuntos
Dieta Hiperlipídica , Interação Gene-Ambiente , Intolerância à Glucose/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Acetatos/metabolismo , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Perfilação da Expressão Gênica , Intolerância à Glucose/metabolismo , Humanos , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos Knockout , Microbiota , Obesidade/metabolismo , Receptores de Superfície Celular/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Fosfolipases Tipo C
13.
PLoS One ; 10(4): e0122195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837594

RESUMO

The development of intestinal permeability and the penetration of microbial products are key factors associated with the onset of metabolic disease. However, the mechanisms underlying this remain unclear. Here we show that, unlike liver or adipose tissue, high fat diet (HFD)/obesity in mice does not cause monocyte/macrophage infiltration into the intestine or pro-inflammatory changes in gene expression. Rather HFD causes depletion of intestinal eosinophils associated with the onset of intestinal permeability. Intestinal eosinophil numbers were restored by returning HFD fed mice to normal chow and were unchanged in leptin-deficient (Ob/Ob) mice, indicating that eosinophil depletion is caused specifically by a high fat diet and not obesity per se. Analysis of different aspects of intestinal permeability in HFD fed and Ob/Ob mice shows an association between eosinophil depletion and ileal paracelullar permeability, as well as leakage of albumin into the feces, but not overall permeability to FITC dextran. These findings provide the first evidence that a high fat diet causes intestinal eosinophil depletion, rather than inflammation, which may contribute to defective barrier integrity and the onset of metabolic disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Eosinófilos/patologia , Intestinos/patologia , Animais , Eosinófilos/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Permeabilidade
14.
Cell Metab ; 22(1): 125-37, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26052006

RESUMO

The role of inflammation in obesity-related pathologies is well established. We investigated the therapeutic potential of LipoxinA4 (LXA4:5(S),6(R),15(S)-trihydroxy-7E,9E,11Z,13E,-eicosatetraenoic acid) and a synthetic 15(R)-Benzo-LXA4-analog as interventions in a 3-month high-fat diet (HFD; 60% fat)-induced obesity model. Obesity caused distinct pathologies, including impaired glucose tolerance, adipose inflammation, fatty liver, and chronic kidney disease (CKD). Lipoxins (LXs) attenuated obesity-induced CKD, reducing glomerular expansion, mesangial matrix, and urinary H2O2. Furthermore, LXA4 reduced liver weight, serum alanine-aminotransferase, and hepatic triglycerides. LXA4 decreased obesity-induced adipose inflammation, attenuating TNF-α and CD11c(+) M1-macrophages (MΦs), while restoring CD206(+) M2-MΦs and increasing Annexin-A1. LXs did not affect renal or hepatic MΦs, suggesting protection occurred via attenuation of adipose inflammation. LXs restored adipose expression of autophagy markers LC3-II and p62. LX-mediated protection was demonstrable in adiponectin(-/-) mice, suggesting that the mechanism was adiponectin independent. In conclusion, LXs protect against obesity-induced systemic disease, and these data support a novel therapeutic paradigm for treating obesity and associated pathologies.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Inflamação/complicações , Inflamação/tratamento farmacológico , Nefropatias/complicações , Lipoxinas/uso terapêutico , Hepatopatias/complicações , Obesidade/complicações , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Autofagia/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/imunologia , Nefropatias/patologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Hepatopatias/tratamento farmacológico , Hepatopatias/imunologia , Hepatopatias/patologia , Camundongos Endogâmicos C57BL , Obesidade/imunologia
15.
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa