Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 13(11): e1007060, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107996

RESUMO

In storing and transmitting epigenetic information, organisms must balance the need to maintain information about past conditions with the capacity to respond to information in their current and future environments. Some of this information is encoded by DNA methylation, which can be transmitted with variable fidelity from parent to daughter strand. High fidelity confers strong pattern matching between the strands of individual DNA molecules and thus pattern stability over rounds of DNA replication; lower fidelity confers reduced pattern matching, and thus greater flexibility. Here, we present a new conceptual framework, Ratio of Concordance Preference (RCP), that uses double-stranded methylation data to quantify the flexibility and stability of the system that gave rise to a given set of patterns. We find that differentiated mammalian cells operate with high DNA methylation stability, consistent with earlier reports. Stem cells in culture and in embryos, in contrast, operate with reduced, albeit significant, methylation stability. We conclude that preference for concordant DNA methylation is a consistent mode of information transfer, and thus provides epigenetic stability across cell divisions, even in stem cells and those undergoing developmental transitions. Broader application of our RCP framework will permit comparison of epigenetic-information systems across cells, developmental stages, and organisms whose methylation machineries differ substantially or are not yet well understood.


Assuntos
Diferenciação Celular , Metilação de DNA , Epigênese Genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Replicação do DNA , Células-Tronco Embrionárias/citologia , Feminino , Fibroblastos/citologia , Loci Gênicos , Humanos , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases
2.
PLoS Genet ; 11(6): e1005279, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26115430

RESUMO

The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting "enhancer" elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony's transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer's activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Pigmentação/genética , Elementos Silenciadores Transcricionais , Alelos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica , Japão , Masculino , Mutação , Fenótipo , Especificidade da Espécie
3.
JCO Precis Oncol ; 7: e2200720, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196218

RESUMO

PURPOSE: Homologous recombination DNA repair deficiency (HRD) is a therapeutic biomarker for sensitivity to platinum and poly(ADP-ribose) polymerase inhibitor therapies in breast and ovarian cancers. Several molecular phenotypes and diagnostic strategies have been developed to assess HRD; however, their clinical implementation remains both technically challenging and methodologically unstandardized. METHODS: We developed and validated an efficient and cost-effective strategy for HRD determination on the basis of calculation of a genome-wide loss of heterozygosity (LOH) score through targeted, hybridization capture and next-generation DNA sequencing augmented with 3,000 common, polymorphic single-nucleotide polymorphism (SNP) sites distributed genome-wide. This approach requires minimal sequence reads and can be readily integrated into targeted gene capture workflows already in use for molecular oncology. We interrogated 99 ovarian neoplasm-normal pairs using this method and compared results with patient mutational genotypes and orthologous predictors of HRD derived from whole-genome mutational signatures. RESULTS: LOH scores of ≥11% had >86% sensitivity for identifying tumors with HRD-causing mutations in an independent validation set (90.6% sensitivity for all specimens). We found strong agreement of our analytic approach with genome-wide mutational signature assays for determining HRD, yielding an estimated 96.7% sensitivity and 50% specificity. We observed poor concordance with mutational signatures inferred using only mutations detected by the targeted gene capture panel, suggesting inadequacy of the latter approach. LOH score did not significantly correlate with treatment outcomes. CONCLUSION: Targeted sequencing of genome-wide polymorphic SNP sites can be used to infer LOH events and subsequently diagnose HRD in ovarian tumors. The methods presented here are readily generalizable to other targeted gene oncology assays and could be adapted for HRD diagnosis in other tumor types.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Reparo de DNA por Recombinação/genética , Recombinação Homóloga/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Mutação , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
4.
Nucleic Acids Res ; 36(22): e150, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18984622

RESUMO

Bisulfite treatment can be used to ascertain the methylation states of individual cytosines in DNA. Ideally, bisulfite treatment deaminates unmethylated cytosines to uracils, and leaves 5-methylcytosines unchanged. Two types of bisulfite-conversion error occur: inappropriate conversion of 5-methylcytosine to thymine, and failure to convert unmethylated cytosine to uracil. Conventional bisulfite treatment requires hours of exposure to low-molarity, low-temperature bisulfite ('LowMT') and, sometimes, thermal denaturation. An alternate, high-molarity, high-temperature ('HighMT') protocol has been reported to accelerate conversion and to reduce inappropriate conversion. We used molecular encoding to obtain validated, individual-molecule data on failed- and inappropriate-conversion frequencies for LowMT and HighMT treatments of both single-stranded and hairpin-linked oligonucleotides. After accounting for bisulfite-independent error, we found that: (i) inappropriate-conversion events accrue predominantly on molecules exposed to bisulfite after they have attained complete or near-complete conversion; (ii) the HighMT treatment is preferable because it yields greater homogeneity among sites and among molecules in conversion rates, and thus yields more reliable data; (iii) different durations of bisulfite treatment will yield data appropriate to address different experimental questions; and (iv) conversion errors can be used to assess the validity of methylation data collected without the benefit of molecular encoding.


Assuntos
5-Metilcitosina/química , Metilação de DNA , DNA/química , Análise de Sequência de DNA , Sulfitos/química , Citosina/química , DNA de Cadeia Simples/química , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Temperatura
5.
Dev Cell ; 34(5): 520-31, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26343453

RESUMO

The evolutionary origins of complex morphological structures such as the vertebrate eye or insect wing remain one of the greatest mysteries of biology. Recent comparative studies of gene expression imply that new structures are not built from scratch, but rather form by co-opting preexisting gene networks. A key prediction of this model is that upstream factors within the network will activate their preexisting targets (i.e., enhancers) to form novel anatomies. Here, we show how a recently derived morphological novelty present in the genitalia of D. melanogaster employs an ancestral Hox-regulated network deployed in the embryo to generate the larval posterior spiracle. We demonstrate how transcriptional enhancers and constituent transcription factor binding sites are used in both ancestral and novel contexts. These results illustrate network co-option at the level of individual connections between regulatory genes and highlight how morphological novelty may originate through the co-option of networks controlling seemingly unrelated structures.


Assuntos
Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Genes de Insetos/genética , Proteínas de Homeodomínio/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Evolução Molecular , Sequências Reguladoras de Ácido Nucleico/genética
6.
J Org Chem ; 73(9): 3492-6, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18363366

RESUMO

Electronic structure theory was used to model the epoxidation of 3-carene by peroxyformic acid. Reactants, products, and transition states were optimized at the B3LYP/6-31G* level of theory, followed by B3LYP/6-311+G** and MP2/6-311+G** single point calculations. The reaction pathway yielding the trans-epoxide product was found to have a significantly lower reaction barrier (7.8 kcal/mol) than that leading to the cis-epoxide product (9.4 kcal/mol), in agreement with expectations. Magnetic shieldings of the two isomeric carene epoxides were also calculated, using the GIAO method, and compared to experimental (1)H and (13)C NMR spectra. Although the calculated carbon spectra proved inconclusive, the proton shieldings calculated for the trans-epoxide correlated much more closely to the experimental values for the major epoxidation product than did the shieldings calculated for the cis-epoxide, serving to verify the identity of the major product.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa