Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Toxicol Appl Pharmacol ; 479: 116714, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820773

RESUMO

The objective of this study was to explore the effects of antioxidant treatments, specifically N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA), in a mouse model of chlorine (Cl2)-induced lung injury. Additionally, the study aimed to investigate the utility of pig precision-cut lung slices (PCLS) as an ex vivo alternative for studying the short-term effects of Cl2 exposure and evaluating antioxidant treatments. The toxicological responses were analyzed in Cl2-exposed mice (inflammation, airway hyperresponsiveness (AHR)) and PCLS (viability, cytotoxicity, inflammatory mediators). Airways contractions were assessed using a small ventilator for mice and electric-field stimulation (EFS) for PCLS. Antioxidant treatments were administered to evaluate their effects. In Cl2-exposed mice, NAC treatment did not alleviate AHR, but it did reduce the number of neutrophils in bronchoalveolar lavage fluid and inflammatory mediators in lung tissue. In PCLS, exposure to Cl2 resulted in concentration-dependent toxicity, impairing the lung tissue's ability to respond to EFS-stimulation. NAC treatment increased viability, mitigated the toxic responses caused by Cl2 exposure, and maintained contractility comparable to unexposed controls. Interestingly, NACA did not provide any additional treatment effect beyond NAC in both models. In conclusion, the establishment of a pig model for Cl2-induced lung damage supports further investigation of NAC as a potential treatment. However, the lack of protective effects on AHR after NAC treatment in mice suggests that NAC alone may not be sufficient as a complete treatment for Cl2 injuries. Optimization of existing medications with a polypharmacy approach may be more successful in addressing the complex sequelae of Cl2-induced lung injury.


Assuntos
Acetilcisteína , Lesão Pulmonar , Camundongos , Animais , Suínos , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Cloro/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Antioxidantes/farmacologia , Pulmão , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Mediadores da Inflamação
2.
Inhal Toxicol ; 34(5-6): 145-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452355

RESUMO

OBJECTIVE: Ammonia (NH3) is a corrosive alkaline gas that can cause life-threatening injuries by inhalation. The aim was to establish a disease model for NH3-induced injuries similar to acute lung injury (ALI) described in exposed humans and investigate the progression of lung damage, respiratory dysfunction and evaluate biomarkers for ALI and inflammation over time. METHODS: Female BALB/c mice were exposed to an NH3 dose of 91.0 mg/kg·bw using intratracheal instillation and the pathological changes were followed for up to 7 days. RESULTS: NH3 instillation resulted in the loss of body weight along with a significant increase in pro-inflammatory mediators in both bronchoalveolar lavage fluid (e.g. IL-1ß, IL-6, KC, MMP-9, SP-D) and blood (e.g. IL-6, Fibrinogen, PAI-1, PF4/CXCL4, SP-D), neutrophilic lung inflammation, alveolar damage, increased peripheral airway resistance and methacholine-induced airway hyperresponsiveness compared to controls at 20 h. On day 7 after exposure, deteriorating pathological changes such as increased macrophage lung infiltration, heart weights, lung hemorrhages and coagulation abnormalities (elevated plasma levels of PAI-1, fibrinogen, endothelin and thrombomodulin) were observed but no increase in lung collagen. Some of the analyzed blood biomarkers (e.g. RAGE, IL-1ß) were unaffected despite severe ALI and may not be significant for NH3-induced damages. CONCLUSIONS: NH3 induces severe acute lung injuries that deteriorate over time and biomarkers in lungs and blood that are similar to those found in humans. Therefore, this model has potential use for developing diagnostic tools for NH3-induced ALI and for finding new therapeutic treatments, since no specific antidote has been identified yet.


Assuntos
Lesão Pulmonar Aguda , Amônia , Lesão Pulmonar Aguda/patologia , Amônia/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Interleucina-6/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo
3.
Inhal Toxicol ; 31(3): 107-118, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31039646

RESUMO

Objective: To establish a rat model with respiratory and pulmonary responses caused by inhalation exposure to non-lethal concentrations of ammonia (NH3) that can be used for evaluation of new medical countermeasure strategies for NH3-induced acute lung injury (ALI). This is of great value since no specific antidotes of NH3-induced injuries exist and medical management relies on supportive and symptomatically relieving efforts. Methods: Female Sprague-Dawley rats (8-9 weeks old, 213g ± 2g) were exposed to NH3 using two different exposure regimens; nose-only inhalation or intratracheal instillation. The experiment was terminated 5 h, 24 h, 14 and 28 days post-exposure. Results: Nose-only inhalation of NH3 (9000-15 000 ppm) resulted in increased salivation and labored breathing directly post-exposure. Exposure did not increase inflammatory cells in bronchoalveolar lavage fluid but exposure to 12 000 ppm NH3 during 15 min reduced body weight and induced coagulation abnormalities by increasing serum fibrinogen levels. All animals were relatively recovered by 24 h. Intratracheal instillation of NH3 (1%) caused early symptoms of ALI including airway hyperresponsiveness, neutrophilic lung inflammation and altered levels of coagulation factors (increased fibrinogen and PAI-1) and early biomarkers of ALI (IL-18, MMP-9, TGFß) which was followed by increased deposition of newly produced collagen 14 days later. Histopathology analysis at 5 h revealed epithelial desquamation and that most lesions were healed after 14 days. Conclusions: This study demonstrates that intratracheal instillation can reproduce several early hallmarks of ALI. Our findings therefore support that the intratracheal instillation exposure regimen can be used for new medical countermeasure strategies for NH3-induced ALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Amônia/administração & dosagem , Amônia/toxicidade , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Feminino , Fibrina/metabolismo , Fibrinogênio/análise , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Nariz , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos , Traqueia
4.
Toxicol Appl Pharmacol ; 309: 44-54, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27586366

RESUMO

We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl2) with the aim to understand the pathogenesis of the long-term sequelae of Cl2-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5h up to 90days after a single inhalation of Cl2. A single dose of dexamethasone (10mg/kg) was administered 1h following Cl2-exposure. A 15-min inhalation of 200ppm Cl2 was non-lethal in Sprague-Dawley rats. At 24h post exposure, Cl2-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24h, the inflammasome-associated cytokines IL-1ß and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-ß expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24h but did not influence the AHR. Inhalation of Cl2 in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-ß1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl2-induced respiratory dysfunction.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Hiper-Reatividade Brônquica/induzido quimicamente , Cloro/toxicidade , Modelos Animais de Doenças , Pneumonia/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar , Cloro/administração & dosagem , Dexametasona/uso terapêutico , Feminino , Exposição por Inalação , Pneumonia/patologia , Ratos , Ratos Sprague-Dawley
5.
BMC Pulm Med ; 14: 110, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24993465

RESUMO

BACKGROUND: Improvements in asthma diagnosis and management require deeper understanding of the heterogeneity of the complex airway inflammation. We hypothesise that differences in the two major inflammatory phenotypes of asthma; eosinophilic and neutrophilic asthma, will be reflected in the lung protein expression profile of murine asthma models and can be delineated using proteomics of bronchoalveolar lavage (BAL). METHODS: BAL from mice challenged with ovalbumin (OVA/OVA) alone (standard model of asthma, here considered eosinophilic) or OVA in combination with endotoxin (OVA/LPS, model of neutrophilic asthma) was analysed using liquid chromatography coupled to high resolution mass spectrometry, and compared with steroid-treated animals and healthy controls. In addition, conventional inflammatory markers were analysed using multiplexed ELISA (Bio-Plex™ assay). Multivariate statistics was performed on integrative proteomic fingerprints using principal component analysis. Proteomic data were complemented with lung mechanics and BAL cell counts. RESULTS: Several of the analysed proteins displayed significant differences between the controls and either or both of the two models reflecting eosinophilic and neutrophilic asthma. Most of the proteins found with mass spectrometry analysis displayed a considerable increase in neutrophilic asthma compared with the other groups. Conversely, the larger number of the inflammatory markers analysed with Bio-Plex™ analysis were found to be increased in the eosinophilic model. In addition, major inflammation markers were correlated to peripheral airway closure, while commonly used asthma biomarkers only reflect central inflammation. CONCLUSION: Our data suggest that the commercial markers we are currently relying on to diagnose asthma subtypes are not giving us comprehensive or specific enough information. The analysed protein profiles allowed to discriminate the two models and may add useful information for characterization of different asthma phenotypes.


Assuntos
Asma/metabolismo , Líquido da Lavagem Broncoalveolar/química , Eosinófilos , Mediadores da Inflamação/análise , Neutrófilos , Proteoma/análise , Animais , Anti-Inflamatórios/farmacologia , Asma/induzido quimicamente , Asma/fisiopatologia , Biomarcadores/análise , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Feminino , Hidrocortisona/análogos & derivados , Hidrocortisona/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Contagem de Leucócitos , Lipopolissacarídeos , Espectrometria de Massas , Cloreto de Metacolina , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Fenótipo , Análise Serial de Proteínas , Proteoma/efeitos dos fármacos , Mecânica Respiratória
6.
Toxicol Lett ; 391: 32-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048885

RESUMO

Chlorine is a toxic industrial chemical that has been used as a chemical weapon in recent armed conflicts. Confirming human exposure to chlorine has proven challenging, and there is currently no established method for analyzing human biomedical samples to unambiguously verify chlorine exposure. In this study, two chlorine-specific biomarkers: palmitoyl-oleoyl phosphatidylglycerol chlorohydrin (POPG-HOCl) and the lipid derivative oleoyl ethanolamide chlorohydrin (OEA-HOCl) are shown in bronchoalveolar lavage fluid (BALF) samples from spontaneously breathing pigs after chlorine exposure. These biomarkers are formed by the chemical reaction of chlorine with unsaturated phospholipids found in the pulmonary surfactant, which is present at the gas-liquid interface within the lung alveoli. Our results strongly suggest that lipid chlorohydrins are promising candidate biomarkers in the development of a verification method for chlorine exposure. The establishment of verified methods capable of confirming the illicit use of toxic industrial chemicals is crucial for upholding the principles of the Chemical Weapons Convention (CWC) and enforcing the ban on chemical weapons. This study represents the first published dataset in BALF revealing chlorine biomarkers detected in a large animal. Furthermore, these biomarkers are distinct in that they originate from molecular chlorine rather than hypochlorous acid.


Assuntos
Cloridrinas , Etanolamina , Ácidos Oleicos , Fosfolipídeos , Humanos , Animais , Suínos , Cloro/toxicidade , Cloridrinas/química , Líquido da Lavagem Broncoalveolar , Biomarcadores
7.
J Anal Toxicol ; 48(3): 171-179, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334750

RESUMO

Exhaled breath (EB) contains various volatile organic compounds (VOCs) that can indicate specific biological or pathological processes in the body. Analytical techniques like gas chromatography-mass spectrometry (GC-MS) can be used to detect and measure these exhaled biomarkers. In this study, the objective was to develop a non-invasive method of EB sampling in animals that were awake, as well as to analyze EB for volatile biomarkers specific for chlorine exposure and/or diagnostic biomarkers for chlorine-induced acute lung injury (ALI). To achieve this, a custom-made sampling device was used to collect EB samples from 19 female Balb/c mice. EB was sampled both pre-exposure (serving as internal control) and 30 min after exposure to chlorine. EB was collected on thermal desorption tubes and subsequently analyzed for VOCs by GC-MS. The following day, the extent of airway injury was assessed in the animals by examining neutrophils in the bronchoalveolar lavage fluid. VOC analysis revealed alterations in the EB biomarker pattern post-chlorine exposure, with eight biomarkers displaying increased levels and six exhibiting decreased levels following exposure. Four chlorinated compounds: trichloromethane, chloroacetone, 1,1-dichloroacetone and dichloroacetonitrile, were increased in chlorine-exposed mice, suggesting their specificity as chlorine EB biomarkers. Furthermore, chlorine-exposed mice displayed a neutrophilic inflammatory response and body weight loss 24 h following exposure. In conclusion, all animals developed an airway inflammation characterized by neutrophil infiltration and a specific EB pattern that could be extracted after chlorine exposure. Monitoring EB samples can readily and non-invasively provide valuable information on biomarkers for diagnosis of chlorine-induced ALI, confirming chlorine exposures.


Assuntos
Cloro , Compostos Orgânicos Voláteis , Feminino , Animais , Camundongos , Cloro/toxicidade , Testes Respiratórios/métodos , Expiração , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/análise , Compostos Orgânicos Voláteis/análise
8.
Toxicol Appl Pharmacol ; 271(2): 168-74, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707766

RESUMO

Chlorine (Cl2) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl2-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200ppm Cl2 during 15min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24h or 14days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100mg/kg) was administered intraperitoneally 1, 3, 6, or 12h following Cl2 exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1h was dose-dependent; high-dose significantly reduced acute airway inflammation (100mg/kg) but not treatment with the relatively low-dose (10mg/kg). Both doses reduced AHR 14days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl2 exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl2 exposure.


Assuntos
Corticosteroides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Cloro/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Colágeno/metabolismo , Dexametasona/uso terapêutico , Feminino , Exposição por Inalação , Camundongos , Camundongos Endogâmicos BALB C , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Mecânica Respiratória/efeitos dos fármacos
9.
Inhal Toxicol ; 25(4): 179-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23480194

RESUMO

CONTEXT: Titanium dioxide (TiO2) nanoparticles (NPs) are regarded as relatively non-toxic in concentrations occurring in occupational environments. Nevertheless, it is conceivable that adverse health effects may develop in sensitive populations such as individuals with respiratory diseases. OBJECTIVE: We investigated whether single or repeated exposure to TiO2 could aggravate inflammatory responses in naïve mice and mice with ovalbumin (OVA)-induced airway inflammation. METHODS: Exposure to aerosolized TiO2 was performed during OVA sensitization, before, or during the OVA challenge period. The effects on respiratory physiology, inflammatory cells in bronchoalveolar lavage (BAL) and inflammatory mediators in BAL and serum were assessed 24 h after the last OVA challenge or TiO2 exposure. RESULTS: A single exposure of TiO2 had a marked effect on responses in peripheral airways and increasing infiltration of neutrophils in airways of naïve animals. Marked aggravation of airway responses was also observed in animals with allergic disease provided that the single dose TiO2 was given before allergen challenge. Repeated exposures to TiO2 during sensitization diminished the OVA-induced airway eosinophilia and airway hyperresponsiveness but concomitant exposure to TiO2 during the OVA challenge period resulted in neutrophilic airway inflammation and a decline in general health condition as indicated by the loss of body weight. CONCLUSION: We conclude that inhalation of TiO2 may aggravate respiratory diseases and that the adverse health effects are highly dependent on dose and timing of exposure. Our data imply that inhalation of NPs may increase the risk for individuals with allergic airway disease to develop symptoms of severe asthma.


Assuntos
Asma/imunologia , Nanopartículas/toxicidade , Pneumonia/imunologia , Titânio/toxicidade , Administração por Inalação , Alérgenos/imunologia , Animais , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Feminino , Fibrinogênio/análise , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Pneumonia/fisiopatologia , Mecânica Respiratória , Titânio/administração & dosagem , Testes de Toxicidade Aguda
10.
Life Sci ; 312: 121252, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460096

RESUMO

Chlorine (Cl2) gas is a toxic industrial chemical (TIC) that poses a hazard to human health following accidental and/or intentional (e.g. terrorist) release. By using a murine model of sub-lethal Cl2 exposure we have examined the airway hyper responsiveness, cellular infiltrates, transcriptomic and proteomic responses of the lung. In the "crisis" phase at 2 h and 6 h there is a significant decreases in leukocytes within bronchoalveolar lavage fluid accompanied by an upregulation within the proteome of immune pathways ultimately resulting in neutrophil influx at 24 h. A flip towards "repair" in the transcriptome and proteome occurs at 24 h, neutrophil influx and an associated drop in the lung function persisting until 14 d post-exposure and subsequent "recovery" after 28 days. Collectively, this research provides new insights into the mechanisms of damage, early global responses and processes of repair induced in the lung following the inhalation of Cl2.


Assuntos
Cloro , Proteoma , Camundongos , Humanos , Animais , Cloro/toxicidade , Proteômica , Pulmão , Líquido da Lavagem Broncoalveolar
11.
Toxicol In Vitro ; 80: 105317, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35065218

RESUMO

Chlorine (Cl2) is a common toxic industrial gas and human inhalation exposure causes tissue damage with symptoms ranging from wheezing to more severe symptoms such as lung injury or even death. Because the mechanism behind Cl2-induced cell death is not clearly understood, the present study aimed to study the cellular effects in vitro after Cl2 exposure of human A549 lung epithelial cells. In addition, the possible treatment effects of the anti-inflammatory antioxidant N-acetyl cysteine (NAC) were evaluated. Exposure of A549 cells to Cl2 (100-1000 ppm) in the cell medium induced cell damage and toxicity within 1 h in a dose-dependent manner. The results showed that 250 ppm Cl2 increased cell death and formation of apoptotic-like bodies, while 500 ppm Cl2 exposure resulted in predominantly necrotic death. Pre-treatment with NAC was efficient to prevent cell damage at lower Cl2 concentrations in part by averting the formation of apoptotic-like bodies and increasing the expression of the anti-apoptotic proteins clusterin and phosphorylated tumour protein p53(S46). Analysis showed that Cl2 induced cell death by a possibly caspase-independent mechanism, since no cleavage of caspase-3 could be detected after exposure to 250 ppm. Currently, these results justifies further research into new treatment strategies for Cl2-induced lung injury.


Assuntos
Cloro/toxicidade , Pulmão/citologia , Oxidantes/toxicidade , Células A549 , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Caspase 3 , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Citocinas/metabolismo , Humanos
12.
J Anal Toxicol ; 46(5): 559-566, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34114620

RESUMO

Chlorine is a toxic chemical that has been used as a chemical warfare agent in recent armed conflicts. There is an urgent need for methods to verify alleged uses of chlorine, and phospholipid chlorohydrins (PL-HOCl) derived from the pulmonary surfactant of exposed victims have previously been proposed as biomarkers of chlorine exposure. Here, we describe an improved protocol for the chemical analysis of these biomarkers and its applicability to biomedical samples from chlorine-exposed animals. By the use of a polymeric solid-phase-supported transesterification of PL-HOCl using ethanolamine, a common biomarker, oleoyl ethanolamide chlorohydrin (OEA-HOCl), was derived from all the diverse oleoyl PL-HOCl that may be formed by chlorine exposure. Compared to native lipid biomarkers, OEA-HOCl represents a larger biomarker pool and is better suited for nano-liquid chromatography--tandem mass spectrometry (nLC-MS-MS analysis), generating 3 amol Limit of Detection (LOD) and a reduced sample carry-over. With the improved protocol, significantly elevated levels of OEA-HOCl were identified in bronchoalveolar lavage fluid (BALF) of chlorine-exposed rats, 2-48 hours after exposure. The difficulty of BALF sampling from humans limits the methods usefulness as a verification tool of chlorine exposure. Conversely, nasal lavage fluid (NLF) is readily collected without advanced equipment. In NLF from chlorine-exposed rats, PL-HOCl were identified and significantly elevated levels of the OEA-HOCl biomarker were detected 2-24 hours after exposure. In order to test the potential of NLF as a biomedical sample for verification of human exposure to chlorine, in-vitro chlorination of human NLF samples was performed. All human in-vitro chlorinated NLF samples exhibited elevated OEA-HOCl biomarker levels, following sample derivatization. These data indicate the potential of human NLF as a biomedical sample for the verification of chlorine exposure, but further work is required to develop and validate the method for the use on real-world samples.


Assuntos
Cloro , Animais , Biomarcadores , Líquido da Lavagem Broncoalveolar/química , Cloro/química , Cromatografia Gasosa-Espectrometria de Massas , Líquido da Lavagem Nasal/química , Ratos
13.
Am J Physiol Lung Cell Mol Physiol ; 301(1): L50-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21498626

RESUMO

The chemokine receptor CCR7 regulates lymphocyte trafficking, and CCR7 deficiency induces infiltration of T and B cells adjacent to vessels in mouse lungs. Perivascular infiltration of T and B cells has also been found in human pulmonary arterial hypertension, and downregulation of the CCR7 receptor in circulating leukocytes of such patients has been observed. To investigate whether changes in the CCR7 system contribute to the pathogenesis of pulmonary hypertension, we utilized mice deficient of the CCR7 receptor. The cardiopulmonary and inflammatory responses of CCR7 depletion were evaluated in CCR7-deficient and wild-type mice. Measurements of cytokines upregulated in the animal model were also performed in patients with pulmonary hypertension and controls and in vascular smooth muscle cells. We found that mice lacking CCR7 had increased right ventricular systolic pressure, reduced pulmonary artery acceleration time, increased right ventricular/tibial length ratio, Rho kinase-mediated pulmonary vasoconstriction, and increased muscularization of distal arteries, indicating pulmonary hypertension. These mice also showed increased perivascular infiltration of leukocytes, consisting mainly of T and B cells, and increased mRNA levels of the inflammatory cytokines interleukin-12 and CX3CL1 within pulmonary tissue. Increased serum levels of interleukin-12 and CX3CL1 were also observed in patients with pulmonary hypertension, particularly in those with pulmonary hypertension associated with connective tissue disorder. In smooth muscle cells, interleukin-12 induced secretion of the angiogenic cytokine interleukin-8. We conclude that these results suggest a role for CCR7 in the development of pulmonary arterial hypertension, at least in some subgroups, possibly via pulmonary infiltration of lymphocytes and secretion of interleukin-12 and CX3CL1.


Assuntos
Movimento Celular , Leucócitos/patologia , Pneumonia/complicações , Pneumonia/patologia , Receptores CCR7/deficiência , Adulto , Animais , Quimiocina CX3CL1/sangue , Hipertensão Pulmonar Primária Familiar , Feminino , Regulação da Expressão Gênica , Hemodinâmica , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Interleucina-12/sangue , Interleucina-8/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Tamanho do Órgão , Pneumonia/sangue , Pneumonia/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR7/metabolismo
14.
J Immunol ; 183(10): 6369-76, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19841188

RESUMO

It is widely established that mast cells (MCs) have a harmful role in asthma, for example by secreting various proinflammatory substances stored within their secretory granule. However, in this study, we show that one of the substances stored within MC granule, chymase, in fact has a protective role in allergic airway inflammation, indicating that MCs may possess both harmful and protective activities in connection with this type of disease. Wild-type (WT) mice and mice lacking mouse MC protease 4 (mMCP-4), a chymase that is functionally homologous to human chymase, were sensitized and challenged with OVA, followed by the assessment of airway physiology and inflammatory parameters. Our results show that the airway hyperresponsiveness was significantly higher in mMCP-4(-/-) as compared with WT mice. Moreover, the degree of lung tissue inflammation was markedly higher in mice lacking mMCP-4 than in WT controls. Histological analysis revealed that OVA sensitization/challenge resulted in a marked increased in the thickness of the smooth muscle cell (SMC) layer and, notably, that the degree of SMC layer thickening was more pronounced in mMCP-4(-/-) animals than in WT controls, thus indicating that chymase may have an effect on airway SMCs. In support of this, mMCP-4-positive MCs were located in the close vicinity of the SMC layer, mainly in the upper airways, and mMCP-4 was shown to be the major chymase expressed in these MCs. Taken together, our results indicate that chymase present in the upper airways protects against allergic airway responses, possibly by regulating SMCs.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Mastócitos/imunologia , Serina Endopeptidases/imunologia , Animais , Hiper-Reatividade Brônquica/enzimologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Hipersensibilidade/enzimologia , Inflamação/enzimologia , Pulmão/imunologia , Pulmão/patologia , Mastócitos/citologia , Mastócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/fisiologia , Ovalbumina/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
15.
Toxicol Lett ; 349: 51-60, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118312

RESUMO

Exposure to high concentrations of ammonia (NH3) can cause life-threatening lung damages. The objective of this study was to establish a translational in vitro model for NH3-induced lung injury. Precision-cut lung slices (PCLS) from rats were exposed to NH3 and toxicological responses and cell viability were quantified by analysis of LDH, WST-1, inflammatory mediators (IL-1ß, IL-6, CINC-1, MMP-9, RAGE and IL-18), and by microscopic evaluation of bronchoconstriction induced by electric-field-stimulation (EFS) or methacholine (MCh). Different treatment strategies were assessed to prevent or reverse the damages caused by NH3 using anti-inflammatory, anti-oxidant or neurologically active drugs. Exposure to NH3 caused a concentration-dependent increase in cytotoxicity (LDH/WST-1) and IL-1ß release in PCLS medium. None of the treatments reduced cytotoxicity. Deposition of NH3 (24-59 mM) on untreated PCLS elicited an immediate concentration-dependent bronchoconstriction. Unlike MCh, the EFS method did not constrict the airways in PCLS at 5 h after NH3-exposure (47-59 mM). Atropine and TRP-channel antagonists blocked EFS-induced bronchoconstriction but these inhibitors could not block the immediate NH3-induced bronchoconstriction. In conclusion, NH3 exposure caused cytotoxic effects and lung damages in a concentration-dependent manner and this PCLS method offers a way to identify and test new concepts of medical treatments and biomarkers that may be of prognostic value.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Amônia/toxicidade , Broncoconstrição/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Ratos Sprague-Dawley
16.
Toxicol Lett ; 322: 58-65, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31962155

RESUMO

High-level concentrations of chlorine (Cl2) can cause life-threatening lung injuries and the objective in this study was to understand the pathogenesis of short-term sequelae of Cl2-induced lung injury and to evaluate whether pre-treatment with the antioxidant N-acetyl cysteine (NAC) could counteract these injuries using Cl2-exposed precision-cut lung slices (PCLS). The lungs of Sprague-Dawley rats were filled with agarose solution and cut into 250 µm-thick slices that were exposed to Cl2 (20-600 ppm) and incubated for 30 min. The tissue slices were pre-treated with NAC (5-25 mM) before exposure to Cl2. Toxicological responses were analyzed after 5 h by measurement of LDH, WST-1 and inflammatory mediators (IL-1ß, IL-6 and CINC-1) in medium or lung tissue homogenate. Exposure to Cl2 induced a concentration-dependent cytotoxicity (LDH/WST-1) and IL-1ß release in medium. Similar cytokine response was detected in tissue homogenate. Contraction of larger airways was measured using electric-field-stimulation method, 200 ppm and control slices had similar contraction level (39 ± 5%) but in the 400 ppm Cl2 group, the evoked contraction was smaller (7 ± 3%) possibly due to tissue damage. NAC-treatment improved cell viability and reduced tissue damage and the contraction was similar to control levels (50 ± 11%) in the NAC treated Cl2-exposed slices. In conclusion, Cl2 induced a concentration-dependent lung tissue damage that was effectively prevented with pre-treatment with NAC. There is a great need to improve the medical treatment of acute lung injury and this PCLS method offers a way to identify and to test new concepts of treatment of Cl2-induced lung injuries.


Assuntos
Acetilcisteína/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cloro/toxicidade , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL1/metabolismo , Citoproteção , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley
17.
Artigo em Inglês | MEDLINE | ID: mdl-19081714

RESUMO

F(2)-isoprostanes have been associated with various forms of oxidant stress. The levels of F(2)-isoprostanes in a murine asthma model were studied both in situ and in vivo and further investigated whether the formation of F(2)-isoprostanes was associated with increased ovalbumin (OVA)-induced airway inflammation after a 17-day (OVA-17) or a 24-day (OVA-24) protocol. Bronchial reactivity was assessed by using a ventilator (FlexiVent). OVA-treated animals had higher lung resistance and lung compliance compared to control groups (P<0.001). 8-Iso-PGF(2)(alpha) levels in bronchoalveolar lavage (BAL) and 8-iso-PGF(2)(alpha) immunoreactivity in lung tissue were analyzed. OVA-17 mice showed a 2.5-fold increased level of 8-iso-PGF(2)(alpha) in BAL compared to PBS-17 mice (P=0.023). Lung tissue from OVA-24 mice had more intense 8-iso-PGF(2)(alpha) staining compared to OVA-17 mice. This study showed an accumulation of F(2)-isoprostanes in acute airway inflammation and a markedly increased tissue damage caused by oxidative stress in an ongoing inflammation.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , F2-Isoprostanos/imunologia , Inflamação/imunologia , Estresse Oxidativo/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia
18.
Respir Physiol Neurobiol ; 165(2-3): 229-36, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19136080

RESUMO

Airway responses to intravenous (i.v.) and inhaled (i.h.) delivery of methacholine (MCh) in BALB/c and C57BL/6 mouse strains have been compared with and without ovalbumin (OVA)-induced airway inflammation. Bronchial reactivity to MCh was assessed in anaesthetised and tracheostomised animals by using an animal ventilator (flexiVent). We partitioned the response of the lungs into airway and parenchymal components in order to compare the contributions of the airways with those of the lung parenchyma to the pulmonary mechanical responses resulting from different routes of MCh administration. Our results indicate disparate physiological responses. Intravenous MCh delivery induced a higher maximum lung resistance than i.h. MCh in OVA-treated BALB/c mice but not in C57BL/6 mice. Inhaled MCh delivery led to a significantly larger fall in lung compliance and a greater impact on peripheral airways than i.v. MCh in both strains. In conclusion, i.v. and i.h. MCh produced disparate effects in different murine strains and variant responses in inflamed airways and healthy controls. The two methods of MCh delivery have important advantages but also certain limitations with regard to measuring airway reactivity in a murine model of allergic asthma.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Asma/fisiopatologia , Broncoconstritores/farmacologia , Complacência Pulmonar/efeitos dos fármacos , Cloreto de Metacolina/farmacologia , Administração por Inalação , Resistência das Vias Respiratórias/fisiologia , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Feminino , Injeções Intravenosas , Complacência Pulmonar/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/fisiopatologia , Respiração Artificial
19.
Pharmaceutics ; 11(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939753

RESUMO

Diseases in the respiratory tract rank among the leading causes of death in the world, and thus novel and optimized treatments are needed. The lungs offer a large surface for drug absorption, and the inhalation of aerosolized drugs are a well-established therapeutic modality for local treatment of lung conditions. Nanoparticle-based drug delivery platforms are gaining importance for use through the pulmonary route. By using porous carrier matrices, higher doses of especially poorly soluble drugs can be administered locally, reducing their side effects and improving their biodistribution. In this study, the feasibility of mesoporous silica particles (MSPs) as carriers for anti-inflammatory drugs in the treatment of airway inflammation was investigated. Two different sizes of particles on the micron and nanoscale (1 µm and 200 nm) were produced, and were loaded with dexamethasone (DEX) to a loading degree of 1:1 DEX:MSP. These particles were further surface-functionalized with a polyethylene glycol⁻polyethylene imine (PEG⁻PEI) copolymer for optimal aqueous dispersibility. The drug-loaded particles were administered as an aerosol, through inhalation to two different mice models of neutrophil-induced (by melphalan or lipopolysaccharide) airway inflammation. The mice received treatment with either DEX-loaded MSPs or, as controls, empty MSPs or DEX only; and were evaluated for treatment effects 24 h after exposure. The results show that the MEL-induced airway inflammation could be treated by the DEX-loaded MSPs to the same extent as free DEX. Interestingly, in the case of LPS-induced inflammation, even the empty MSPs significantly down-modulated the inflammatory response. This study highlights the potential of MSPs as drug carriers for the treatment of diseases in the airways.

20.
Respir Res ; 9: 23, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18307760

RESUMO

BACKGROUND: Deep inspirations (DI) have bronchodilatory and bronchoprotective effects in healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and in a murine model of acute and chronic airway inflammation. METHODS: Balb/c mice were sensitized to ovalbumin (OVA) and exposed to nebulized OVA for 1 week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to receive DI, which were given twice during the minute before assessment of lung mechanics. RESULTS: DI protected against bronchoconstriction of central airways in healthy mice and in mice with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI reduced lung resistance induced by methacholine from 3.8 +/- 0.3 to 2.8 +/- 0.1 cmH2O.s.mL-1 in healthy mice and 5.1 +/- 0.3 to 3.5 +/- 0.3 cmH2O.s.mL-1 in acute airway inflammation (both P < 0.001). In healthy mice, DI reduced the maximum decrease in lung compliance from 15.9 +/- 1.5% to 5.6 +/- 0.6% (P < 0.0001). This protective effect was even more pronounced in mice with chronic inflammation where DI attenuated maximum decrease in compliance from 44.1 +/- 6.6% to 14.3 +/- 1.3% (P < 0.001). DI largely prevented increased peripheral tissue damping (G) and tissue elastance (H) in both healthy (G and H both P < 0.0001) and chronic allergen-treated animals (G and H both P < 0.0001). CONCLUSION: We have tested a mouse model of potential value for defining mechanisms and sites of action of DI in healthy and asthmatic human subjects. Our current results point to potent protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the presence of DI may blunt airway hyperreactivity.


Assuntos
Bronquite/fisiopatologia , Imunização , Inalação , Ovalbumina/imunologia , Mecânica Respiratória , Sistema Respiratório/fisiopatologia , Doença Aguda , Resistência das Vias Respiratórias , Animais , Bronquite/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Broncoconstrição , Broncoconstritores/farmacologia , Doença Crônica , Elasticidade , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Complacência Pulmonar , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa